
Parallel computation

1

2

0. Parallelism that does not require
programmer intervention

3

Pipelines

CPU pipelines can be viewed as implementing some form of parallelism

in the sense that multiple executions are being executed simultaneously

For example, one instruction’s arithmetic is performed (in an ALU)

while the next is being decoded

However, from the programmer’s perspective,

everything must happen as if there was no parallelism at all

4

Multitasking

5

Multitasking

Multitasking allows multiple executables to run “simultaneously”

(even on a single processor)

Regularly, the scheduler (part of the OS kernel) decides which task gets to run on a

processor.

6

Multitasking on a single-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

(running) (running) (running) (sleeping) (sleeping)

7

Multitasking on a single-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

(running) (running) (running) (sleeping) (sleeping)

8

Multitasking on a single-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

(running) (running) (running) (sleeping) (sleeping)

9

Multitasking on a single-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

(running) (running) (running) (sleeping) (sleeping)

10

Multitasking on a single-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

(running) (running) (running) (sleeping) (sleeping)

11

Multitasking on a single-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

(running) (running) (running) (sleeping) (sleeping)

12

Multitasking on a single-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

(running) (running) (running) (sleeping) (sleeping)

13

The scheduler is called:

at regular intervals f times per second, by default:

Linux: f = 1000 Hz

MacOS: f = 100 Hz

Windows 10: f = 64 Hz

when an task performs a system call (open(), write(), exit(), …)

when a “hardware interrupt” happens:

keyboard received a keypress

network device received data

storage device finished writing

sound/video device ready to receive next buffer

…

(> see CONFIG_HZ)

(> see sysctl kern.clockrate)

(> see timeBeginPeriod())

14

https://github.com/torvalds/linux/blob/master/kernel/Kconfig.hz
https://flylib.com/books/en/3.126.1.80/1/
https://randomascii.wordpress.com/2020/10/04/windows-timer-resolution-the-great-rule-change/

Preemptive multitasking

When the scheduler decides to interrupt a running process (e.g. to run another)

the process is said to “preempted”

it becomes “runnable”

When a process executes a system call,

it starts “sleeping”

after the requested operation is performed,

in some cases, it will run again

in other cases, it becomes runnable and will only run when a CPU is available

many system calls can take a long time to perform (“blocking” system calls):

read(), write(), recv(), send()

15

Preemptive multitasking

At any given time, most tasks are sleeping

waiting for data (e.g. from network)

waiting for user interaction (e.g. keyboard or touch input)

waiting on a timer (tasks that run at regular interval)

The only tasks that are normally running/runnable

are those performing CPU-intensive operations

graphics rendering

audio/video/data compression and decompression

computations

etc.

16

17

Multitasking on a multi-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

CPU 1 CPU 2 CPU 3

(running) (running) (running) (running) (running)

18

Multitasking on a multi-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

CPU 1 CPU 2 CPU 3

(running) (running) (running) (running) (running)

19

Multitasking on a multi-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

CPU 1 CPU 2 CPU 3

(running) (running) (running) (running) (running)

20

Multitasking on a multi-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

CPU 1 CPU 2 CPU 3

(running) (running) (running) (running) (running)

21

Multitasking on a multi-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

CPU 1 CPU 2 CPU 3

(running) (running) (running) (running) (running)

22

Multitasking on a multi-core processor

CPU 0

task 0 task 1 task 2 task 3 task 4

CPU 1 CPU 2 CPU 3

(running) (running) (running) (running) (running)

23

From a hardware perspective:

A CPU corresponds to a single integrated circuit (“IC”) package

A computer can (rarely) have multiple CPUs

Typically only found in datacenters, rarely more than 2

Each CPU can have multiple cores

generally 2-8 cores on laptops

up to 128 on datacenter CPUs

From a software perspective:

Everything that can run a task is generally called a “CPU”

Only the kernel’s scheduler will (sometimes) care about CPU vs. core

All other software is unaware of the difference

24

a CPU can have multiple copies of some logic blocks

very common for arithmetic and logic units (ALUs)

-

-

-

ALU 1 ________________ ________________ ALU 2

memory ________________

mov rax, [rsi]

add rcx, rbx

add rdx, rdi

25

Simultaneous Multithreading (SMT)

From a hardware perspective:

With Simultaneous Multithreading (SMT) (a.k.a. Hyperthreading),

each core can run multiple (generally 2) tasks (“threads”)

but they share many logic blocks (in particular ALUs)

SMT works well when those logic blocks would otherwise be idle

SMT is ineffective when those logic blocks are the bottleneck

From a software perspective:

Everything that can run a task is generally called a “CPU”

Only the kernel’s scheduler will (sometimes) care about CPU vs. core vs. thread

All other software is unaware of the difference

“Thread” has a different meaning in software
26

1. SIMD

27

SIMD

SIMD stands for Single Instruction Multiple Data

new, larger registers (in addition to the general purpose ones): “vector registers”

bits 255..224 223…192 191…160 159…128 127…96 95…64 63…32 31…0

256 ymm0

64 fp64 #3 fp64 #2 fp64 #1 fp64 #0

32 fp32 #7 fp32 #6 fp32 #5 fp32 #4 fp32 #3 fp32 #2 fp32 #1 fp32 #0

16

8

but

SIMD registers cannot be treated as big integers

individual “lanes” (8-, 16-, 32- or 64-bit parts) generally cannot be accessed individually

28

SIMD registers

On Intel (and AMD) ISAs:

SSE (~1999): 8 128-bit registers xmm0 - xmm7

AVX (~2011): 16 256-bit registers ymm0 - ymm15

AVX-512 (~2016, but not yet common): 32 512-bit registers zmm0 - zmm31

On ARM:

Neon (~2005): 16 128-bit registers Q0 - Q15

29

Example

void add_one(float v[4])
{

v[0] += 1.0;

v[1] += 1.0;

v[2] += 1.0;

v[3] += 1.0;
}

add_one:
vbroadcastss xmm0, DWORD PTR .LC1[rip] # xmm0 <- { 1.0, 1.0, 1.0, 1.0 }

vaddps xmm0, xmm0, XMMWORD PTR [rdi] # xmm0 <- xmm0 + [v] (4x 32-bits)
vmovups XMMWORD PTR [rdi], xmm0 # [v] <- xmm0
ret

30

Counter-example

void many_ops(float v[4])
{

v[0] += 1.0;

v[1] -= 2.0;

v[2] *= 3.0;

v[3] /= v[2];
}

many_ops:
vmovss xmm1, DWORD PTR .LC0[rip]
vmovss xmm3, DWORD PTR [rdi+12]
vmulss xmm1, xmm1, DWORD PTR [rdi+8] # <---
MUL
vmovss xmm2, DWORD PTR [rdi+4]
vmovss xmm0, DWORD PTR .LC1[rip]
vsubss xmm2, xmm2, DWORD PTR .LC2[rip] # <---
SUB
vaddss xmm0, xmm0, DWORD PTR [rdi] # <---
ADD
vdivss xmm3, xmm3, xmm1 # <---
DIV
vunpcklps xmm0, xmm0, xmm2
vunpcklps xmm1, xmm1, xmm3
vmovlhps xmm0, xmm0, xmm1
vmovups XMMWORD PTR [rdi], xmm0
ret

This code cannot by performed by a single SIMD instruction

31

How to use SIMD

Rely on compilers (“autovectorization”)

Write assembly code

Use compiler “intrinsics”

Intrinsics look like C functions

but the compiler knows how to translate them to specific assembly code

> Intel intrinsics guide

> ARM intrinsics

32

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://developer.arm.com/architectures/instruction-sets/intrinsics/

for (int x = kx; x < nx; x++) {
__m256d v = _mm256_andnot_pd(sign, gx[x]);
__m256d oldmax = maxv[x];
__m256d newmax = _mm256_max_pd(oldmax, v);
__m256i keep = _mm256_castpd_si256(_mm256_cmp_pd(oldmax, newmax, _CMP_EQ_OQ));

maxv[x] = newmax;
maxi[x] = _mm256_or_si256(_mm256_and_si256(keep, maxi[x]), _mm256_andnot_si256(keep, ix));

}

> refer to the intrinsics guide

33

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

2. Thread-level concurrency

34

Processes and threads

When the OS runs an executable, it gets its own process

A single executable (if run multiple times) can have multiple independent processes

Memory is virtualized: each process has its own view of the memory it owns

A process can create (“spawn”) multiple threads

Like processes, each thread is an individual task from the point of view of the scheduler

Within a process, threads share a same view of the process memory

35

Process 0

Thread 0

Process 1

Thread 1

Process 2

Thread 2

Process 3

Thread 3

Process 4

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

36

Pro: Communication between threads is extremely efficient

Just write something to memory,

let other threads read it through the same pointer

Con: Because memory is shared, synchronizing threads is very complex

37

Wrong code (1)

int ready = 0; // one if there is some data in the buffer, zero otherwise
int buffer = 0; // data in the buffer

// Every push()ed element must be pop()ed exactly once.
// - push() will block until the buffer is empty/available/"not ready"
// - pop() will block until the buffer is nonempty/"ready"
void push(int value)
{

while (ready == 1) {
// wait

}

buffer = value;
ready = 1;

}

int pop()
{

while (ready == 0) {

// wait
}

ready = 0;

return buffer;
}

38

The C compiler is free to reorder this:

void push(int value)
{

while (ready == 1) {

// wait
}

buffer = value;
ready = 1;

}

into this:

void push(int value)
{

buffer = value;

while (ready == 1) {

// wait
}

ready = 1;

}

39

The C compiler can also notice that this loop has either

zero iterations, or

infinitely many iterations without side effects (UB!)

while (ready == 1) {

// wait
}

thus remove the loop!

40

Wrong code (2)

volatile int ready = 0; // one if there is some data in the buffer, zero otherwise
volatile int buffer = 0; // data in the buffer

void push(int value)
{

while (ready == 1) {

// wait
}

buffer = value;
ready = 1;

}

int pop()
{

while (ready == 0) {

// wait
}

ready = 0;

return buffer;
}

41

Thread 0

// ready = 1 buffer = 'A'
int pop()
{

while (ready == 0) {

// wait
}

// ready = 1 buffer = 'A'
ready = 0; // ready = 0 buffer = 'A'

// ready = 0 buffer = 'B'
// ready = 1 buffer = 'B'

return buffer;
}

Thread 1

void push(int value) // push('B')
{

while (ready == 1) {

// wait
}

buffer = value;
ready = 1;

}

42

Wrong code (3)

volatile int ready = 0; // one if there is some data in the buffer, zero otherwise
volatile int buffer = 0; // data in the buffer

void push(int value)
{

while (ready == 1) {

// wait
}

buffer = value;
ready = 1;

}

int pop()
{

while (ready == 0) {

// wait
}

int b = buffer;
ready = 0;

return b;
}

43

Thread 0

// ready = 0 buffer = 'X'
void push(int value) // push('A')
{

while (ready == 1) {

// wait
}

// ready = 0 buffer = 'X'

// ready = 0 buffer = 'B'
// ready = 1 buffer = 'B'

buffer = value; // ready = 1 buffer = 'A'
ready = 1; // ready = 1 buffer = 'A'

}

Thread 1

void push(int value) // push('B')
{

while (ready == 1) {

// wait
}

buffer = value;
ready = 1;

}

44

Solution

low-level: compiler intrinsics for “atomic” operations:

combined operations that are performed as a single unit

no thread will ever see the memory in an intermediate state

high-level: use libraries that correctly implement some primitives:

locks, queues, etc.

Posix threads (“pthreads”; Linux, MacOS)

OpenMP (Open Multi-Processing; portable)

45

3. Distributed computing

46

Distributed computing

In distributed computing, processes do not share memory

They must communicate by explicitly sending data to each other

(send(), recv(), etc.)

typically over the network

47

Distributed computing

Con: Communication is much slower than multithreading

Pros:

Easier to implement and reason about

Scales to higher levels of parallelism

As of today, off-the-shelf computers can have up to

2 processors × 128 cores × 2 SMT threads = 512 concurrent software threads

With distributed computing, networked computers can work together in parallel

Libraries:

Message Passing Interface (MPI)

…

48

4. Hardware acceleration

49

Graphics processing units (GPUs)

GPUs were designed to perform the same simple, repetitive operations

on many pixels (“fragment shaders”), or

on many 3D coordinates (“vertex shaders”)

50

Simplified fragment shader example

Given:

the coordinates (i, j) of a pixel on screen

the corresponding coordinates in 3D space (x, y, z)

the normal vector to the surface at that point (v0, v1, v2)

the texture color for that point (r, g, b)

the coordinates (lx, ly, lz) and color (lr, lg, lb) of a light source

compute

the apparent color of the pixel.

51

Simplified vertex shader example

Given:

the coordinates of an object in 3D space (x, y, z)

the coordinates of the viewpoint camera in 3D space (vx, vy, vz)

the viewpoint camera orientation (q0, q1, q2, q2)

the viewpoint camera’s focal length f

compute:

the coordinates (i, j) of this object on screen.

52

GPUs were designed to perform the same simple, repetitive operations

on many pixels (“fragment shaders”), or

on many 3D coordinates (“vertex shaders”)

they generally adopt a SIMT (“single instruction, multiple threads”) model

hundreds of threads working on different sets of data

but running the exact same instructions

(in CUDA, the 32 threads in a “warp” execute in lockstep)

good fit for long loops performing repetitive operations

bad fit for if/then/else

53

Single instruction, multiple threads (SIMT)

Warp
Thread 0 Thread 1 Thread 2 Thread 3
------------------ ------------------ ------------------- -------------------
condition = True condition = True condition = False condition = False
def function(condition, data):

if condition:
r = a(data)

else:
r = b(data)

return r

54

Single instruction, multiple threads (SIMT)

Warp
Thread 0 Thread 1 Thread 2 Thread 3
------------------ ------------------ ------------------- -------------------
condition = True condition = True condition = False condition = False
def function(condition, data):

if condition: if True: if True: if False: if False:
<-----
r = a(data)

else:
r = b(data)

return r

55

Single instruction, multiple threads (SIMT)

Warp
Thread 0 Thread 1 Thread 2 Thread 3
------------------ ------------------ ------------------- -------------------
condition = True condition = True condition = False condition = False
def function(condition, data):

if condition: if True: if True: if False: if False:
r = a(data) r = a(data) r = a(data) pass pass
<-----

else:
r = b(data)

return r

56

Single instruction, multiple threads (SIMT)

Warp
Thread 0 Thread 1 Thread 2 Thread 3
------------------ ------------------ ------------------- -------------------
condition = True condition = True condition = False condition = False
def function(condition, data):

if condition: if True: if True: if False: if False:
r = a(data) r = a(data) r = a(data) pass pass

else: else: else: else: else:
<-----
r = b(data)

return r

57

Single instruction, multiple threads (SIMT)

Warp
Thread 0 Thread 1 Thread 2 Thread 3
------------------ ------------------ ------------------- -------------------
condition = True condition = True condition = False condition = False
def function(condition, data):

if condition: if True: if True: if False: if False:
r = a(data) r = a(data) r = a(data) pass pass

else: else: else: else: else:
r = b(data) pass pass r = b(data) r = b(data)
<-----

return r

58

Single instruction, multiple threads (SIMT)

Warp
Thread 0 Thread 1 Thread 2 Thread 3
------------------ ------------------ ------------------- -------------------
condition = True condition = True condition = False condition = False
def function(condition, data):

if condition: if True: if True: if False: if False:
r = a(data) r = a(data) r = a(data) pass pass

else: else: else: else: else:
r = b(data) pass pass r = b(data) r = b(data)

return r return r return r return r return r
<-----

59

Single instruction, multiple threads (SIMT)

Warp
Thread 0 Thread 1 Thread 2 Thread 3
------------------ ------------------ ------------------- -------------------
condition = True condition = True condition = False condition = False
def function(condition, data):

if condition: if True: if True: if False: if False:
r = a(data) r = a(data) r = a(data) pass pass

else: else: else: else: else:
r = b(data) pass pass r = b(data) r = b(data)

return r return r return r return r return r

60

How do we use GPUs?

GPUs are programmed in special-purpose languages

Typically, all GPU code is compiled

during application startup (“shader compliation”),

by the device driver

for the specific GPU device installed (amount and subdivision of threads, memory, etc.)

Two dominant players in the GPU market: nVidia and AMD

Three major general-purpose GPU programming languages:

CUDA (nVidia, proprietary)

ROCm (AMD, open-source)

OpenCL (cross-platform, open-source)
61

Examples (GLSL)

float box(in vec2 st, in vec2 size){
size = vec2(0.5) - size*0.5;
vec2 uv = smoothstep(size,

size+vec2(0.001),
st);

uv *= smoothstep(size,
size+vec2(0.001),
vec2(1.0)-st);

return uv.x*uv.y;
}

62

Examples (GLSL)

vec3 rgb2hsb(in vec3 c){
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);

vec4 p = mix(vec4(c.bg, K.wz),
vec4(c.gb, K.xy),
step(c.b, c.g));

vec4 q = mix(vec4(p.xyw, c.r),
vec4(c.r, p.yzx),
step(p.x, c.r));

float d = q.x - min(q.w, q.y);
float e = 1.0e-10;

return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)),
d / (q.x + e),
q.x);

}

63

Examples (CUDA)

inline __device__ float3 roundAndExpand(float3 v, ushort *w) {

v.x = rintf(__saturatef(v.x) * 31.0f);

v.y = rintf(__saturatef(v.y) * 63.0f);

v.z = rintf(__saturatef(v.z) * 31.0f);

*w = ((ushort)v.x << 11) | ((ushort)v.y << 5) | (ushort)v.z;
v.x *= 0.03227752766457f; // approximate integer bit expansion.
v.y *= 0.01583151765563f;

v.z *= 0.03227752766457f;

return v;
}

64

Parallel matrix multiplication

8192 x 8192 matrix multiplication

precision: fp32 (“float”) – total 256 MB per matrix

CPU: Ryzen 7900 x3d (released Feb 2023)

version description seconds ratio improvement

matmul_1 straightforward implementation 2794.068 1x

matmul_2 transpose B matrix 338.163 8x 8x

matmul_3 block multiply 79.346 35x 5x

matmul_4 AVX512 SIMD 14.121 198x 6x

matmul_5 OpenBLAS 7.462 374x 2x

matmul_6 OpenBLAS, 24 threads 1.114 2508x 7x

65

Parallel matrix multiplication

65536 x 65536 matrix multiplication

precision: fp32 (“float”) – total 16 GB per matrix

CPU: Ryzen 7900 x3d (released Feb 2023)

GPU: nVidia H100 80GB (released Sep 2022)

version description seconds ratio

matmul_6 OpenBLAS, 24 threads, 7900x3d 344.961 1x

matmul_7 cuBLAS 28.657 12x

66

