Dictionaries

Associative arrays

Associative arrays

- also known as maps or dictionaries
- are collections of (key, value) tuples, where
	- key could be any string of bits (integer, character string, other data)
	- value is any data
- that support
	- insertion (add a (key, value) tuple)
	- **deletion** (remove a (key, value) tuple)
	- **Iookup** given a key,
		- \circ find the corresponding value,
		- o or determine that no such key has been added

Naive implementation

Just some list of (key, value) tuples:

Associative arrays:

Implementations using a total order on keys

Total order on keys

- We assume that we can compare keys (i.e. evaluate key_i \leq key_j for any i, j)
- Always possible in practice (reinterpret key bits as a big integer)
- Sometimes, a specialized ≤ operator makes sense (e.g. constant-size keys)
- key space may be infinite (arbitrary-sized keys)

Sorted dynamic array of (key**,** value**) tuples**

- Assume key $0 \leq k$ ey $1 \leq ... \leq k$ eyn.
- Use bisection for key lookup

Insertion (after lookup) Lookup $O(1)$ $O(n)$ $O(n)$ $O(n)$ $O(n)$ $O(\log(n))$

Binary search tree

- Invariant: For any given node i,
	- \blacksquare key_j \leq key_i for every descendant node j in the left subtree of i
	- \bullet key_j > key_i for every descendant node j in the right subtree of i

• Main concern: depending on insertion order, we may get

Self-balancing binary search tree

- AVL trees
- Red-black trees
- B-trees, splay trees, treaps, …

Self-balancing binary search tree

Cache behavior: ok, not great (similiar to other binary tree structures, e.g. heap)

Associative arrays:

Implementations using keys bits

–

- A trie (or prefix tree) is a tree of static arrays of size 2^T
- Key bits are divided into chunks of T bits: "letters"
- Each T -bits letter gives an index for one node's static arrays
- Letters form a path in the tree (from root to leaf)

$T = 4$

 $T = 4$ Insert $(0x9f2, V1)$ -> letters 2, f, 9

 $T = 4$ Insert (0x9f2, V1) -> letters 2, f, 9

0 1 2 3 4 5 6 7 8 9 a b c d e f

Key space

- Let us denote
	- K : the set of all values a key can take
	- n : number of tuples in the associative array
- We say that the key space is "sparse" if $n \ll K$
- We call it "dense" otherwise

"Dense" key space

Insertion/deletion/lookup are $\simeq O(3)=O(\log_{16}4096)=O(\log_{(2^T)}n)$

T

but…

... then why not use just a static array? (or equivalently choose $T = 12$)

"Sparse" key space

- Tries only make sense when the key space is sparse i.e. a static array of the size of the whole key space would be too big
- Complexity not dependent on number of entries
	- Depends on key size and *T*
- Memory overhead can be large

worst case: every leaf node has a single tuple, $O(n \times 2^T)$

Associative arrays:

Implementations using keys bits

–

Hash tables

Hash table background

- Again, we denote
	- K : the set of all values a key can take
	- n : number of tuples in the associative array
- If we had a "dense" key space $(n$ not much smaller than K)
	- \blacksquare then we would simply use a static array, indexed by keys
- Could we map K into something dense?
	- … and then use a static array

Hash function

- A hash function h is a **mapping** $\hbar : K \to U$ where $\; U \subseteq \mathbb{N} \;$ and $\; |U| \ll |K| \;$ (indeed K may not be a finite set, e.g. for arbitrary-sized keys)
- $|S| < |H| < |K|$, hash functions are necessarily injective $\exists \; k_1 \neq k_2 \;$ such that $\; h(k_1) = h(k_2) \; .$
- Examples of (usually bad) hash functions:
	- \blacksquare take just the lower 8 bits of the key

$$
\quad \blacktriangleright \hskip-2.5pt \pmb{h} \; : \; \mathbb{Z} \to \{0,\ldots,m-1\}, \qquad h(k):
$$

$k \mod m$

Hash table

- A hash table is a static array of size ∣*U*∣
- with an associated hash function $h:K\to U.$
- $\theta(k,v)$ tuples are stored in the static array at index $h(k)$
- Since h is injective, we may have collisions (tuples with distinct keys stored at a same array index)

How to deal with collisions (1)

- Make the hash table
	- a static array of linked lists, or
	- **a** static array of dynamic arrays
- In case of collision, resort to $O(c)$ linear search (where c is the maximum number of collisions)
	- in the worst case, $c=n$

How to deal with collisions (2): Open addressing

• Insertion of (key, value):

- Step 0: Compute index $i = h(key)$
- Step 1: If $array[i]$ is empty,
	- \circ place (key, value) there, done.
- Step 2: Otherwise,
	- \circ let i = (i + 1) mod |U|,
	- o go back to Step 1.

Open addressing: lookup

- Lookup for key:
	- Step 0: Compute index $i = h(key)$
	- Step 1: If array [i] matches key, \circ return array[i].
	- Step 2: If array[i] is empty,
		- o return not found.
	- Step 2: Otherwise,
		- \circ let i = (i + 1) mod |U|,
		- o go back to Step 1.

Probing

- Insertion of (k, v) :
	- Step 0:
	- Compute index $h_0 = h(k)$ Let $j=0$ Step 1: If $\>$ array $[i(h_0, j)]\>$ is empty, place (k, v) there, done.
	- Step 2: Otherwise,
		- let $j=j+1$,
		- o go back to Step 1.
- where $i(h_0,j)$ can be:
	- $i(h_0,j) = (h_0+j) \bmod{|U|}$ as before
	- $i(h_0,j) = (h_0 + L_1 j) \bmod{|U|}$ for some constant K ("linear probing")

\bullet $i(h_0, j) = (h_0 + L_1 j + L_2 j^2) \bmod{|U|}$ for some K, L ("quadratic probing")

Good hash functions

- in practice, naive hash functions yield horrible collision rates (even for random keys!)
- good hash functions perform great on real (non-random) keys
	- they take a non-uniform distribution of keys over K
	- map it into a distribution over U that "looks" uniformly random
- Fowler–Noll–Vo (FNV), djb2, SipHash (lookup "non-cryptographic hash functions")
- Such generic hash functions h_0 typically return 32-, 64- or 128-bit numbers. w e use index $\ h(k)=h_0(k)\ \mathrm{mod}\ |U|$

Complexity of hash table operations

- performance depends on
	- density $(n/|\overline{U}|)$
	- **Example 1 key distribution**
	- **hash function**
	- **Peropelling** method
- when density approaches 1,
	- C increase $|U|$ (e.g. double it)
	- **Fig. 1** rebuild hash table ("rehashing")

In practice

- as long as collision rate is kept low
	- insert/delete/lookup are essentially $O(1)$
- first hash table access is typically a cache miss (at least L1)
- in case of collisions, with open addressing & linear probing, subsequent access may not be a cache miss

Associative arrays:

Performance

- Between self-balancing trees, tries and hash tables, no clearly superior data structure.
- Data- and application-dependent.
- Try, benchmark

- Hash tables often perform better... when suitable:
	- when hashing is cheap
	- when we can ensure few collisions
	- when the order of magnitude of n known in advance
- Self-balancing trees are often more robust:
	- **much** better worst case non-amortized complexity (rehashing!)
- Tries can be faster when keys have a special structure
	- **Page table** (virtual address translation)
	- network routing (IP addresses)
	- GPT-type tokenizers

Combinations are possible and commonly used

- Hash table as a static array of self-balancing trees
- Depth-K trie with self-balancing trees at leaf nodes

 \bullet ...

Spatial data structures

Spatial data structures

- Spatial data structures store collections of vectors in \mathbb{R}^n
- they allow operations such as
	- $\mathsf{insertion}\left(\mathsf{add}\nolimits \mathsf{a}\right. \mathsf{vector}\nolimits x \in \mathbb{R}^m\right)$
	- **deletion** (remove one vector)
	- find the vector closest to a given $y \in \mathbb{R}^m$
	- **Fig. 4** for every inserted vector, find its nearest neighbor
	- for every inserted vector, find its k nearest neighbors
	- for every inserted vector, find all other vectors within a distance d

m

The problem

"for every inserted vector, find all other vectors within a distance d "

Naively, this problem has $O(n^2)$ complexity:

$$
\begin{aligned} R &:= \emptyset \\ \text{For } i=0,\ldots,n-1: \\ \text{For } j &= i+1,\ldots,n \\ \text{If } &\|x^i - x^j\| \leq d: \\ &\|R &:= R \cup \{(i,j)\} \end{aligned}
$$

 $-1:$ $\}$

Grids

Grids

Grids

- Pros:
	- **quadratic only within grid cells**
- Cons:
	- need finite bounds $L \leq x_i \leq U$ for all x , for all i
	- **fixed cell size**
		- some may have too many xs
		- o many may be empty

Quadtrees and octrees

Quadtrees and octrees

Quadtrees and octrees

Quadtrees, octrees, k-d trees

- Pros:
	- no need for finite bounds $L \leq x_i \leq U$ for all x , for all i
	- variable cell size
- Limitations:
	- **Fixed cell shape (cubes / boxes)**
	- poor fit for high-dimensional data:
		- as m grows
			- \circ data size grows linearly
			- \circ number of cells grows exponentially
				- \circ even if all points are on a 2-dimensional hyperplane

- Pros:
	- variable cell shape
- Cons:
	- **Example 13 Separating hyperplane computation is costly**
- Limitations:
	- not a good fit for high-dimensional data if, e.g. on a 2-dimensional curved manifold

Locality-sensitive hashing

- Design a function $h:\mathbb{R}^m\rightarrow\mathbb{R}$
- $|y x|$ small \Rightarrow $|h(y) h(x)|$ small, with high probability
- Impossible in all generality
- Depends on data