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Associative arrays
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Associative arrays

also known as maps or dictionaries

are collections of (key, value) tuples, where

key could be any string of bits (integer, character string, other data)

value is any data

that support

insertion (add a (key, value) tuple)

deletion (remove a (key, value) tuple)

lookup given a key,

find the corresponding value,

or determine that no such key has been added
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Naive implementation

Just some list of (key, value) tuples:
(k0, v0)
(k1, v1)
(k2, v2)
(k3, v3)
(k4, v4)
(k5, v5)
...

Insertion Deletion (a�er lookup) Lookup

Linked list

Dynamic array

O(1) O(1) O(n)

O(1) O(n) O(n)
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Associative arrays:

Implementations using
a total order on keys
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Total order on keys

We assume that we can compare keys (i.e. evaluate key_i ≤ key_j for any i, j)

Always possible in practice (reinterpret key bits as a big integer)

Sometimes, a specialized ≤ operator makes sense (e.g. constant-size keys)

key space may be infinite (arbitrary-sized keys)

6



Sorted dynamic array of (key, value) tuples

Assume key0 ≤ key1 ≤ ... ≤ keyn.

Use bisection for key lookup

Insertion Deletion (a�er lookup) Lookup

Linked list

Dynamic array

Sorted dynamic array

O(1) O(1) O(n)

O(1) O(n) O(n)

O(n) O(n) O(log(n))
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Binary search tree

Invariant: For any given node i,

key_j ≤ key_i for every descendant node j in the le� subtree of i

key_j > key_i for every descendant node j in the right subtree of i

Main concern: depending on insertion order, we may get

 good  or  bad

8
4                        10

1       5                9        12
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Self-balancing binary search tree

AVL trees

Red-black trees

B-trees, splay trees, treaps, …

Insertion Deletion (a�er lookup) Lookup

Linked list

Dynamic array

Sorted dynamic array

Binary search tree

AVL tree

Red-black tree

O(1) O(1) O(n)

O(1) O(n) O(n)

O(n) O(n) O(log(n))

O(n) O(n) O((n))

O(log(n)) O(log(n)) O(log(n))

O(log(n)) O(log(n)) O(log(n))
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Self-balancing binary search tree

Cache behavior: ok, not great
(similiar to other binary tree structures, e.g. heap)

8
4                        10

1       5                9        12
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Associative arrays:

Implementations using
keys bits
–
Tries

11



Trie

A trie (or prefix tree) is a tree of static arrays of size 

Key bits are divided into chunks of  bits: “letters”

Each -bits letter gives an index for one node’s static arrays

Letters form a path in the tree (from root to leaf)

2T

T

T
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  T = 4

13



  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/
/

                 0 1 2 3 4 5 6 7 8 9 a b c d e f

16



  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/
/

                 0 1 2 3 4 5 6 7 8 9 a b c d e f
\
\
\
\

                                            0 1 2 3 4 5 6 7 8 9 a b c d e f
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/
/

                 0 1 2 3 4 5 6 7 8 9 a b c d e f
\
\
\
\

                                            0 1 2 3 4 5 6 7 8 9 a b c d e f
|
V1
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9
  Insert (0xc8d, V2)   ->  letters d, 8, c

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/
/

                 0 1 2 3 4 5 6 7 8 9 a b c d e f
\
\
\
\

                                            0 1 2 3 4 5 6 7 8 9 a b c d e f
|
V1

19



  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9
  Insert (0xc8d, V2)   ->  letters d, 8, c

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \
/ \

                 0 1 2 3 4 5 6 7 8 9 a b c d e f                             0 1 2 3 4 5 6 7 8 9 a b c d e f
\
\
\
\

                                            0 1 2 3 4 5 6 7 8 9 a b c d e f
|
V1
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9
  Insert (0xc8d, V2)   ->  letters d, 8, c

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \
/ \

                 0 1 2 3 4 5 6 7 8 9 a b c d e f                             0 1 2 3 4 5 6 7 8 9 a b c d e f
\ \
\ \
\ \
\ \

                                            0 1 2 3 4 5 6 7 8 9 a b c d e f                 0 1 2 3 4 5 6 7 8 9 a b c d e f
|
V1
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9
  Insert (0xc8d, V2)   ->  letters d, 8, c

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \
/ \

                 0 1 2 3 4 5 6 7 8 9 a b c d e f                             0 1 2 3 4 5 6 7 8 9 a b c d e f
\ \
\ \
\ \
\ \

                                            0 1 2 3 4 5 6 7 8 9 a b c d e f                 0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
V1 V2
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9
  Insert (0xc8d, V2)   ->  letters d, 8, c
  Insert (0x532, V3)   ->  letters 2, 3, 5

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \
/ \

                 0 1 2 3 4 5 6 7 8 9 a b c d e f                             0 1 2 3 4 5 6 7 8 9 a b c d e f
\ \
\ \
\ \
\ \

                                            0 1 2 3 4 5 6 7 8 9 a b c d e f                 0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
V1 V2
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9
  Insert (0xc8d, V2)   ->  letters d, 8, c
  Insert (0x532, V3)   ->  letters 2, 3, 5

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \
/ \

                 0 1 2 3 4 5 6 7 8 9 a b c d e f                             0 1 2 3 4 5 6 7 8 9 a b c d e f
\ \
\ \
\ \
\ \

                                            0 1 2 3 4 5 6 7 8 9 a b c d e f                 0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
V1 V2
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9
  Insert (0xc8d, V2)   ->  letters d, 8, c
  Insert (0x532, V3)   ->  letters 2, 3, 5

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \
/ \

                 0 1 2 3 4 5 6 7 8 9 a b c d e f                             0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \ \
/ \ \
/ \ \
/ \ \

  0 1 2 3 4 5 6 7 8 9 a b c d e f           0 1 2 3 4 5 6 7 8 9 a b c d e f                 0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
V1 V2
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  T = 4
  Insert (0x9f2, V1)   ->  letters 2, f, 9
  Insert (0xc8d, V2)   ->  letters d, 8, c
  Insert (0x532, V3)   ->  letters 2, 3, 5

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \
/ \

                 0 1 2 3 4 5 6 7 8 9 a b c d e f                             0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \ \
/ \ \
/ \ \
/ \ \

  0 1 2 3 4 5 6 7 8 9 a b c d e f           0 1 2 3 4 5 6 7 8 9 a b c d e f                 0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
V3 V1 V2
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Key space

Let us denote

: the set of all values a key can take

: number of tuples in the associative array

We say that the key space is “sparse” if 

We call it “dense” otherwise

K

n

n ≪ K
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“Dense” key space

  T = 4                    n = 4096
  Insert (0x001, W_0)
  Insert (0x002, W_2)
  . . .
  Insert (0xfff, W_4095)

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \
/ \

                 0 1 2 3 4 5 6 7 8 9 a b c d e f                             0 1 2 3 4 5 6 7 8 9 a b c d e f
/ \ \
/ \ \
/ \ \
/ \ \

  0 1 2 3 4 5 6 7 8 9 a b c d e f           0 1 2 3 4 5 6 7 8 9 a b c d e f                 0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
V3 V1 V2

Insertion/deletion/lookup are ≃ O(3) = O(log  4096) =16 O(log  n)(2 )T

but…

… then why not use just a static array? (or equivalently choose T = 12)
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“Sparse” key space

Tries only make sense when the key space is sparse

i.e. a static array of the size of the whole key space would be too big

Complexity not dependent on number of entries

Depends on key size and 

Memory overhead can be large

worst case: every leaf node has a single tuple, 

T

O(n× 2 )T
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Associative arrays:

Implementations using
keys bits
–
Hash tables
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Hash table background

Again, we denote

: the set of all values a key can take

: number of tuples in the associative array

If we had a “dense” key space (  not much smaller than )

then we would simply use a static array, indexed by keys

Could we map  into something dense?

… and then use a static array

K

n

n K

K
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Hash function

A hash function  is a mapping  where  and 

(indeed  may not be a finite set, e.g. for arbitrary-sized keys)

Since , hash functions are necessarily injective

 such that 

Examples of (usually bad) hash functions:

take just the lower 8 bits of the key

h h : K → U U ⊆ N ∣U ∣ ≪ ∣K∣
K

∣U ∣ < ∣K∣
∃ k  =1  k  2 h(k  ) =1 h(k  )2

h : Z → {0, … ,m − 1}, h(k) = k mod m
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Hash table

A hash table is a static array of size 

with an associated hash function .

 tuples are stored in the static array at index 

Since  is injective, we may have collisions

(tuples with distinct keys stored at a same array index)

∣U ∣

h : K → U

(k, v) h(k)

h

33



How to deal with collisions (1)

Make the hash table

a static array of linked lists, or

a static array of dynamic arrays

In case of collision, resort to  linear search

(where  is the maximum number of collisions)

in the worst case, 

O(c)
c

c = n
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
| |
V1 V2
V3
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2
  Lookup 0x4d2   ->  h(0x4d2) = 0x2

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
| |
V1 V2
V3
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2
  Lookup 0x4d2   ->  h(0x4d2) = 0x2

*

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
| |
V1 V2
V3
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2
  Lookup 0x4d2   ->  h(0x4d2) = 0x2   ->  not found

*

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
| |
V1 V2
V3
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How to deal with collisions (2): Open addressing

Insertion of   (key, value):

Step 0: Compute index   i = h(key)

Step 1: If   array[i]   is empty,

place   (key, value)   there, done.

Step 2: Otherwise,

let   i = (i + 1) mod |U|,

go back to Step 1.
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
| |
V1 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
| |
V1 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2

*

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
| |
V1 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2

*

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| |
| |
V1 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2

*

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
| | |
V1V3 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
| | |
V1V3 V2
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Open addressing: lookup

Lookup for   key:

Step 0: Compute index   i = h(key)

Step 1: If   array[i]   matches   key,

return   array[i].

Step 2: If   array[i]   is empty,

return not found.

Step 2: Otherwise,

let   i = (i + 1) mod |U|,

go back to Step 1.
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
| | |
V1V3 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2
  Lookup 0x4d2   ->  h(0x4d2) = 0x2

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
| | |
V1V3 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2
  Lookup 0x4d2   ->  h(0x4d2) = 0x2

*

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
| | |
V1V3 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2
  Lookup 0x4d2   ->  h(0x4d2) = 0x2

*

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
| | |
V1V3 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2
  Lookup 0x4d2   ->  h(0x4d2) = 0x2

*

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
| | |
V1V3 V2
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  h(k) = k mod 16
  Insert (0x9f2, V1)   ->  h(0x9f2) = 0x2
  Insert (0xc8d, V2)   ->  h(0xc8d) = 0xd
  Insert (0x532, V3)   ->  h(0x532) = 0x2
  Lookup 0x4d2   ->  h(0x4d2) = 0x2   ->  not found

*

                                               0 1 2 3 4 5 6 7 8 9 a b c d e f
| | |
| | |
V1V3 V2
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Probing

Insertion of   :

Step 0:

Compute index   

Let   

Step 1: If      is empty,

place      there, done.

Step 2: Otherwise,

let   ,

go back to Step 1.

where  can be:

   as before

   for some constant  (“linear probing”)

(k, v)

h  =0 h(k)
j = 0
array[i(h  , j)]0

(k, v)

j = j + 1

i(h  , j)0

i(h  , j) =0 (h  +0 j) mod ∣U ∣
i(h  , j) =0 (h  +0 L  j) mod ∣U ∣1 K



   for some  (“quadratic probing”)i(h  , j) =0 (h  +0 L  j +1 L  j ) mod ∣U ∣2
2 K,L
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Good hash functions

in practice, naive hash functions yield horrible collision rates

(even for random keys!)

good hash functions perform great on real (non-random) keys

they take a non-uniform distribution of keys over 

map it into a distribution over  that “looks” uniformly random

Fowler–Noll–Vo (FNV), djb2, SipHash (lookup “non-cryptographic hash functions”)

Such generic hash functions  typically return 32-, 64- or 128-bit numbers.

we use index 

K

U

h  0

h(k) = h  (k) mod ∣U ∣0
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Complexity of hash table operations

performance depends on

density ( )

key distribution

hash function

probing method

when density approaches 1,

increase  (e.g. double it)

rebuild hash table (“rehashing”)

n/∣U ∣

∣U ∣
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In practice

as long as collision rate is kept low

insert/delete/lookup are essentially 

first hash table access is typically a cache miss (at least L1)

in case of collisions, with open addressing & linear probing,

subsequent access may not be a cache miss

O(1)
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Associative arrays:

Performance
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Between self-balancing trees, tries and hash tables, no clearly superior data structure.

Data- and application-dependent.

Try, benchmark
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Hash tables o�en perform better… when suitable:

when hashing is cheap

when we can ensure few collisions

when the order of magnitude of  known in advance

Self-balancing trees are o�en more robust:

much better worst case non-amortized complexity (rehashing!)

Tries can be faster when keys have a special structure

page table (virtual address translation)

network routing (IP addresses)

GPT-type tokenizers

n
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Combinations are possible and commonly used

Hash table as a static array of self-balancing trees

Depth-K trie with self-balancing trees at leaf nodes

…
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Spatial data structures
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Spatial data structures

Spatial data structures store collections of vectors in 

they allow operations such as

insertion (add a vector )

deletion (remove one vector)

find the vector closest to a given 

for every inserted vector, find its nearest neighbor

for every inserted vector, find its  nearest neighbors

for every inserted vector, find all other vectors within a distance 

Rm

x ∈ Rm

y ∈ Rm

k

d
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The problem

“for every inserted vector, find all other vectors within a distance ”d
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Naively, this problem has  complexity:O(n )2

 

R := ∅
For i = 0, … ,n − 1 :

For j = i + 1, … ,n − 1 :
If ∣∣x − x ∣∣ ≤ d :i j

R := R ∪ {(i, j)}
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Grids
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Grids
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Grids

Pros:

quadratic only within grid cells

Cons:

need finite bounds  for all , for all 

fixed cell size

some may have too many s

many may be empty

L ≤ x  ≤i U x i

x
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Quadtrees and octrees
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Quadtrees and octrees
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Quadtrees and octrees
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k-d trees
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k-d trees
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k-d trees
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Quadtrees, octrees, k-d trees

Pros:

no need for finite bounds  for all , for all 

variable cell size

Limitations:

fixed cell shape (cubes / boxes)

poor fit for high-dimensional data:

as  grows

data size grows linearly

number of cells grows exponentially

even if all points are on a 2-dimensional hyperplane

L ≤ x  ≤i U x i

m
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Binary space partitioning
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Binary space partitioning
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Binary space partitioning
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Binary space partitioning

Pros:

variable cell shape

Cons:

separating hyperplane computation is costly

Limitations:

not a good fit for high-dimensional data if, e.g. on a 2-dimensional curved manifold
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Locality-sensitive hashing

Design a function 

such that  small  small, with high probability

Impossible in all generality

Depends on data

h : R →m R
∣∣y − x∣∣ ⇒ ∣h(y) − h(x)∣
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