
Data structures in memory
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Abstract data types
and
data structures
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An abstract data type is a data container

Examples:

in Python: list, dict, set, …

in C++: std::vector, std::unordered_map, …

Specifies which operations are (natively) supported

Does not specify how data is stored

Does not specify how the operations are implemented

A data structure is an implementation of an abstract data type

Specifies how data is layed out in memory

Specifies which algorithms are used for operations

We can compute the computational complexity of those algorithms
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Lists
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Lists are one of the simplest abstract data type

Just a collection of ordered elements

They support

storing multiple elements together

and optionally

appending an element (at the end of the list)

discarding the last element (at the end of the list)

inserting an element (in any position) in the list

deleting an element (in any position) in the list

accessing or modifying all elements in order

accessing or modifying an element at an arbitrary index (“random access”)

…
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Arrays
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Static arrays

Static arrays implement lists of a fixed size 

Elements are stored contiguously, one a�er another, in memory

They implement

accessing or modifying an element at an arbitrary index

element_address = array_address + index * element_size

complexity 

accessing or modifying all elements in order (direct consequence of random access)

complexity 

n

O(1)

O(n)

7



Dynamic arrays

Dynamic arrays implement lists of a variable size 

Elements are stored contiguously, one a�er another, in memory

They implement static array operations, plus

changing the size  of the list

complexity  in theory

as a consequence, we can

append an element (at the end of the list) in 

discard the last element (at the end of the list) in 

insert an element (in any position) in the list in 

delete an element (in any position) in the list in 

…

n

n

O(n)

O(n)
O(n)

O(n)
O(n)
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Size increase

An array occupies the bytes in memory:

from   array_address

to        array_address + n * element_size - 1

Increasing  has  complexity, because the memory at
                      array_address + n * element_size
may be occupied by other data

In that case, the dynamic array must be relocated elsewhere in memory
(changing array_address)

All n * element_size bytes must be copied to the new location,
hence  complexity

n O(n)

O(n)
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Size decrease

Conversely, if the memory before and/or a�er an array is free,

we may want to move the array

in order to create a larger block of free memory

Not doing this may cause “memory fragmentation”
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In theory:

operation complexity

access/modify element at arbitrary index

increase 

decrease 

append an element

discard last element

insert an element

delete an element

O(1)

n O(n)

n O(n)

O(n)

O(n)

O(n)

O(n)
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In practice:   Almost all implementations ignore fragmentation due to shrinking
       (no move when decreasing )

operation complexity

access/modify element at arbitrary index

increase 

decrease 

append an element

discard last element

insert an element

delete an element

n > 0

O(1)

n O(n)

n O(1)

O(n)

O(1)

O(n)

O(n)
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Over-allocation

We have two distinct quantities:

the user-visible size 

the allocated size 

If the user requests a size increase 

as long as  nothing needs to happen

 is never incremented (no )

instead, we increase  exponentially ( )

n

a

n >′ n

n ≤′ a,

a a =′ a+ 1

a a =′ 2a
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Exponential allocation (n = 3)

. . . x

(used) 3 = n

4 = a

14



Exponential allocation (n = 4)

. . . .

(used) 4 = n

4 = a
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Exponential allocation (n = 5)

. . . . . x x x

(used) 5 = n

8 = a
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Exponential allocation (n = 6)

. . . . . . x x

(used) 6 = n

8 = a
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Exponential allocation (n = 7)

. . . . . . . x

(used) 7 = n

8 = a
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Exponential allocation (n = 8)

. . . . . . . .

(used) 8 = n

8 = a
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Exponential allocation (n = 9)

. . . . . . . . . x x x x x x x

(used) 9 = n

16 = a
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Exponential allocation (n = 10)

. . . . . . . . . . x x x x x x

(used) 10 = n

16 = a
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Exponential allocation (n = 11)

. . . . . . . . . . . x x x x x

(used) 11 = n

16 = a
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Exponential allocation (n = 12)

. . . . . . . . . . . . x x x x

(used) 12 = n

16 = a
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Exponential allocation (n = 13)

. . . . . . . . . . . . . x x x

(used) 13 = n

16 = a
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Exponential allocation (n = 14)

. . . . . . . . . . . . . . x x

(used) 14 = n

16 = a
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Exponential allocation (n = 15)

. . . . . . . . . . . . . . . x

(used) 15 = n

16 = a
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Exponential allocation (n = 16)

. . . . . . . . . . . . . . . .

(used) 16 = n

16 = a
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Exponential allocation (n = 17)

. . . . . . . . . . . . . . . . . x x …

(used) 17 = n

… 32 = a
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Exponential allocation (n = 18)

. . . . . . . . . . . . . . . . . . x …

(used) 18 = n

… 32 = a
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Exponential allocation (n = 19…)

. . . . . . . . . . . . . . . . . . . …

(used) 19 = n

… 32 = a
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struct dynamic_array {
void *address;
size_t n;
size_t a;

};

int grow(struct dynamic_array *d, size_t new_n)
{

if (new_n <= d->a) {

d->n = new_n;
return SUCCESS;

}

size_t new_a = d->a;

while (n > new_a)
new_a = new_a * 2;

void *new_addr = malloc(new_a);

if (new_addr == NULL)
return ERROR;

memcpy(new_addr, d->address, d->n); // O(n)

free(d->address);

d->address = new_addr;
d->n = new_n;
d->a = new_a;

return SUCCESS;
}
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Drawback of exponential allocation

We waste some memory.

However, we always have       a ≤ 2n (specifically, )a = 2⌈log  (n)⌉2
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Complexity of exponential allocation (loose analysis)

start with an empty array

increment its size  times

 we perform (at most)  moves,

of sizes .

 total cost:

 total (for  size increments)

 amortized (for each size increment)

 amortized

n

⇒ k := ⌈log  (n)⌉2

1, 2, 4, 8, 16, … , 2k−1

⇒

           

1
≤ n

+ 2
≤ n

+ 4
≤ n

+ 8
≤ n

+ …
…

+ 2k−1

≤ n

 

k terms

 

≤ kn n

≤ k

O(log  (n))2
33



Complexity of exponential allocation (better analysis)

start with an empty array

increment its size  times

 we perform (at most)  moves,

of sizes .

 total cost:

 (power series)

 total (for  size increments)

 amortized (for each size increment)

n

⇒ k := ⌈log  (n)⌉2

1, 2, 4, 8, 16, … , 2k−1

⇒

           1 + 2 + 4 + 8 + … + 2k−1

= 2 −k 1
= 2 −⌈log  (n)⌉2 1
≤ 2n
O(n) n

O(1)
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operation complexity

access/modify element at arbitrary index

increase  amortized

decrease 

append an element  amortized

discard last element

insert an element

delete an element

O(1)

n O(1)

n O(1)

O(1)

O(1)

O(n)

O(n)
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Virtual memory

In terms of asymptotic complexity, the cost of changing  comes from

But memory is virtualized,

we do not need to physically move bytes around.

Instead we can use the page table to

remap the physical memory associated to a virtual address (d->address)

to a different virtual address (new_addr).

n

memcpy(new_addr, d->address, d->n); // O(n)
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Remapping virtual memory using the page table

Pro: Memory move becomes essentially  in practice

Con: Need to call the OS kernel to change page table

context switch (swap page table, pollute caches)

large fixed cost

As a consequence, this is done only when  grows very large (multiple megabytes of data).

 for some large  (avoids waste of exponential increase)

O(1)

n

a =′ a+K K
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For very large  (multiple megabytes):

operation complexity

access/modify element at arbitrary index

increase  (roughly)

decrease 

append an element  (roughly)

discard last element

insert an element

delete an element

n

O(1)

n O(1)

n O(1)

O(1)

O(1)

O(n)

O(n)
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Linked lists
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Linked lists implement lists of a variable size 

They implement

inserting, deleting, modifying an element (in any position): 

accessing or modifying all elements in order: 

They do not have special support for accessing or modifying an element at an arbitrary index

(“random access”)

but it can be implemented using above (“accessing all elements”), with complexity 

n

O(1)
O(n)

O(n)
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Doubly-linked lists

struct element {
struct payload data;

struct element *prev;
struct element *next;

};

int insert_after(struct element *e, struct payload data)
{

struct element *x = malloc(sizeof(struct element));

if (x == NULL)
return ERROR;

struct element *f = e->next;

x->data = data;
x->prev = e;
x->next = f;

e->next = x;
f->prev = x;

return SUCCESS;
}
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operation dynamic array doubly-linked list

access/modify element at arbitrary index

increase 

decrease 

append an element

discard last element

insert an element

delete an element

O(1) O(n)

n O(1) O(1)

n O(1) O(1)

O(1) O(1)

O(1) O(1)

O(n) O(1)

O(n) O(1)
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Memory management considerations

Memory allocation is slow

compared to dynamic arrays’ fast case

struct element *x = malloc(sizeof(struct element));

if (new_n <= d->a) {

d->n = new_n;
return SUCCESS;

}
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operation dynamic array doubly-linked list

access/modify element at arbitrary index

increase 

decrease 

append an element

discard last element

insert an element

delete an element

O(1) O(n)

n O(1) O(1)

n O(1) O(1)

O(1) O(1)

O(1) O(1)

O(n) O(1)

O(n) O(1)
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Memory caches considerations

List traversal

assuming deep pipelines and good branch prediction,

the processor can start fetching dynamic_array[i + 1]

while waiting for dynamic_array[i]

but it cannot start fetching e->next->data

while waiting for e->data / e->next (data dependency)

for (int i = 0; i < n; i++) {

struct payload data = dynamic_array[i];
...

}

struct element *e = first_element;

while (1) {

struct payload data = e->data;
...

e = e->next;
if (e == first_element)

break;

}
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Linked list have fewer applications than one could expect

However, when they are appropriate, they can be extremely useful
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More options

Indirection (dynamic array of pointers)

In-memory tree data structures

…

struct nary_node {
struct payload data;

struct nary_node *children[MAX_CHILDREN];
}

struct dll_node {
struct payload data;

struct dll_node *prev_sibling;
struct dll_node *next_sibling;
struct dll_node *first_child;

}
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