Data structures in memory

Abstract data types

data structures

e An abstract data type is a data container
= Examples:
o in Python:1list,dict, set,...
o In C++:std: :vector, std: :unordered_map, ...
s Specifies which operations are (natively) supported

= Does not specify how data is stored

= Does not specify how the operations are implemented

e Adata structure is an implementation of an abstract data type

» Specifies how data is layed out in memory

» Specifies which algorithms are used for operations

o We can compute the computational complexity of those algorithms

Lists

e Lists are one of the simplest abstract data type
e Just a collection of ordered elements
e They support
= storing multiple elements together
= and optionally
o appending an element (at the end of the list)
o discarding the last element (at the end of the list)
o inserting an element (in any position) in the list
o deleting an element (in any position) in the list
o accessing or modifying all elements in order

o accessing or modifying an element at an arbitrary index (“random access”)

Arrays

Static arrays

e Static arrays implement lists of a fixed size
e Elements are stored contiguously, one after another, in memory
e Theyimplement
m accessing or modifying an element at an arbitrary index
o element_address = array_address + 1ndex * element_size
o complexity O(1)
= accessing or modifying all elements in order (direct consequence of random access)

o complexity O(n)

Dynamic arrays

e Dynamic arrays implement lists of a variable size

o |
o |

lements are stored contiguously, one after another, in memory

ney implement static array operations, plus
= changing the size n of the list
complexity O(n) in theory
= as a consequence, we can
o append an element (at the end of the list) in O(n)
o discard the last element (at the end of the list) in O(n)
o insert an element (in any position) in the listin O(n)

o delete an element (in any position) in the listin O(n)

O e o o

e An array occupies the bytes in memory:

» from array_address

m t0 array_address + n * element_size - 1

e Increasing n has O(n) complexity, because the memory at

array_address + n * element_size
may be occupied by other data

e In that case, the dynamic array must be relocated elsewhere in memory
(changing array_address)

e Alln * element_size bytes must be copied to the new location,
hence O(n) complexity

e Conversely, if the memory before and/or after an array is free,
= we may want to move the array
» in order to create a larger block of free memory

e Not doing this may cause “memory fragmentation”

In theory:

operation complexity

access/modify element at arbitrary index (O(1)

O

S

Increasen

N SN N N N N
N SN N N N N’

S

decrease n

append an element

discard last element

O(n
insert an element ((n
delete anelement (O(n

In practice: Almost all implementations ignore fragmentation due to shrinking
(no move when decreasingnn > 0)

operation complexity

access/modify element at arbitrary index (O(1)

O

/\/\/‘\/5/-\/\
~—

n)

1)

Increase N

O

decrease n

append an element

O

discard last element

O
Z

insert an element

O
2

delete an element

We have two distinct quantities:

m the user-visible sizen

= the allocated size a

If the user requests a size increase n >n

= aslongas n' < a, nothing needs to happen
a is never incremented (no o' = a + 1)

instead, we increase a exponentially (@ = 2a)

Exponential allocation (n = 3)

Exponential allocation (n = 4)

(used) 4
4

N

d

Exponential allocation (n =5)

Exponential allocation (n = 6)

Exponential allocation (n=7)

Exponential allocation (n = 8)

Exponential allocation (n =9)

16

Exponential allocation (n =10)

(used) 10=n

Exponential allocation (n =11)

(used) 11=n

Exponential allocation (n =12)

(used) 12=n

Exponential allocation (n =13)

(used) 13

[
-

Exponential allocation (n = 14)

(used) 14 =n

Exponential allocation (n = 15)

(used)

15=n
16

Exponential allocation (n = 16)

(used) 16=n
16=2a

Exponential allocation (n =17)

(used) 17=n
. 32=a

Exponential allocation (n =18)

(used) 18

[
)

. 32

[
Q

Exponential allocation (n =19...)

(used) 19=n
. 32=a

struct dynamic_array {
volid *address;
size t n;
size t a;

s

int grow(struct dynamic_array *d, size_t new_n)

{
if (new_n <= d->a) {
d->n = new_n;
return SUCCESS;
}

size t new_a = d->a;

while (n > new_a)
new_a = new_a * 2;

void *new_addr = malloc(new_a);

if (new_addr == NULL)
return ERROR;

memcpy (new_addr, d->address, d->n);

free(d->address) ;

d->address = new_addr;
d->n = new_n;
d->a = new_a;

return SUCCESS;

// 0(n)

We waste some memory.

However, we always have a < 2n (specifically, @ = 2/1°8())

start with an empty array

Increment its size 11 times

= we perform (at most) k := [logy(n) | moves,
of sizes1,2,4,8,16,...,2F 1.

—> total cost:

k terms

< kn total (for 1 size increments)
< k amortized (for each size increment)

O(log,(n)) amortized

e start with an empty array

e increment its size n times

e = we perform (at most) k := |logy(n) | moves,
of sizes1,2,4,8,16,...,2F 1.

e —> total cost:

1 + 2+ 4 +

e = 28 _ 1 (power series)
o — 9llogy(n)] _ 1
e < 2n

e O(n) total (for 1 size increments)

e O(1) amortized (for each size increment)

8

I

zk—l

operation

complexity

access/modify element at arbitrary index

Increasen

decrease n

append an element
discard last element
insert an element

delete an element

In terms of asymptotic complexity, the cost of changing n comes from

memcpy (new_addr, d->address, d->n); // 0(n)

e But memory is virtualized,

e we do not need to physically move bytes around.

e Instead we can use the page table to
= remap the physical memory associated to a virtual address (d->address)

= to a different virtual address (new _addr).

Pro: Memory move becomes essentially O(1) in practice
Con: Need to call the OS kernel to change page table
» context switch (swap page table, pollute caches)

» |arge fixed cost

As a consequence, this is done only when 1 grows very large (multiple megabytes of data).

a = a + K forsome large K (avoids waste of exponential increase)

Forvery large n (multiple megabytes):

operation

complexity

access/modify element at arbitrary index

INncrease n

decrease n

append an element
discard last element
insert an element

delete an element

Linked lists

e Linked lists implement lists of a variable sizen
e They implement
» inserting, deleting, modifying an element (in any position): 0(1)
= accessing or modifying all elements in order: O(n)
e They do not have special support for accessing or modifying an element at an arbitrary index
(“random access”)

e butitcan be implemented using above (“accessing all elements”), with complexity O(n)

Doubly-linked lists

struct element {
struct payload data;

struct element *prev;
struct element *next;

int insert_after(struct element *e, struct payload data)
struct element *x = malloc(sizeof(struct element));

if (x == NULL)
return ERROR;

struct element *f = e->next;
x->data = data;
X->prev = e;

x->next = T;

e->next = Xx,
f->prev = x;

return SUCCESS;

operation dynamicarray doubly-linked list

access/modify element at arbitrary index (O(1) O(n)

increasenn (O

decreasen O

append an element ()

(

(

(
discard last element (O (1
insert an element O(
(

delete an element ()

Memory allocation is slow

struct element *x = malloc(sizeof(struct element));

compared to dynamic arrays’ fast case

if (new_n <= d->a) {
d->n = new_n;
return SUCCESS;

operation dynamicarray doubly-linked list

access/modify element at arbitrary index (O(1) O(n)

increasenn (O

decreasen O

append an element ()

(

(

(
discard last element (O (1
insert an element O(
(

delete an element ()

List traversal

for (int 1 = 0; 1 < n; i++) { struct element *e = first_element;
struct payload data = dynamic_array[i];
. while (1) {
} struct payload data = e->data;
e = e->next,;
if (e == first_element)
break;

e assuming deep pipelines and good branch prediction,

e the processor can start fetching dynamic_array[i + 1]
while waiting for dynamic_array[i]

e butit cannot start fetching e->next->data

while waiting for e->data / e->next (data dependency)

e Linked list have fewer applications than one could expect

e However, when they are appropriate, they can be extremely useful

More options

e Indirection (dynamic array of pointers)

e In-memory tree data structures

struct nary_node {
struct payload data;

struct nary_node *children[MAX_CHILDREN];

}

struct dll_node {
struct payload data;

struct dll_node *prev_sibling;
struct dll_node *next_sibling;
struct dl1l_node *first child;

