
Stochastic instrumentation

1

Stochastic instrumentation

2

Previous limitations

Static instrumentation is expensive (and affects accuracy)

With performance counters:

How could we find hot spots?

(small groups of instructions that the application spends a lot of time running)

What about performance counts (cache misses, mispredicted branches,…)

at those hot spots?

3

Solution

Stochastic instrumentation:

every N cycles (e.g. every 1,000,000th cycle / every 0.1ms), a sample is taken

the sample records:

which instruction is currently being executed

optionally, what it is waiting for (instr. decoding, pipeline bubble, memory access, …)

optionally, instruction addresses of the last few branches

optionally, whether those branches were successfully predicted

4

Stochastic instrumentation

Pros

no performance penalty

no interference with normal execution

accuracy naturally increases on hotspots

Cons

like performance counters, needs hardware support

5

Analysis applications

Linux

perf record / perf report

KDAB hotspot

MacOS: Apple XCode Instruments

Windows: Visual Studio (“dynamic instrumentation” / “collection via sampling”)

Intel-specific: vTune

AMD-specific: uProf

6

Bottom-up analysis

7

Flame graphs

8

Tutorial

9

Matrix multiplication

We want to implement a fast matrix multiply code for medium-sized matrices (e.g. 1024 × 1024).

Download and implement the code of the function matrix_multiply().

Then, find performance issues and, if possible, improve the implementation.

matmul_0.c

10

https://www.poirrier.ca/courses/softeng/ex/matmul_0.c

#define SIZE 1024

...

void matrix_multiply(double *x, const double *a, const double *b)
{

for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++) {

x[i * SIZE + j] = ...;

}

}

}

11

Byte stream filtering

We read (from standard input) a stream of bytes as unsigned 8-bit integers.

We want to filter those integers, and write (to standard output) only some of them. Specifically, we
write those who are divisors of 873248763249102240.

Download , and implement the code of the function filter().

Then, find performance issues and, if possible, improve the implementation.

filter_0.c

12

https://www.poirrier.ca/courses/softeng/ex/filter_0.c

size_t filter(unsigned char *out, unsigned char *in, size_t n)
{

size_t s = 0;

for (size_t j = 0; j < n; j++) {

unsigned char c = in[j];

// TODO: keep only divisors of 873248763249102240

out[s] = c;
s++;

}

return s;
}

13

