
Benchmarking and instrumentation

1

More caches and pipelines

2

recall that memory is virtualized

a virtual address hardware address translation is necessary for every memory access

the translation uses a page table

the page table is stored in memory

hence at least two effective memory accesses per memory fetch instruction?

→

Solution: part of the page table is cached in the CPU

the “Translation Lookaside Buffer” (TLB)

3

Caches and pipelines are used at various levels to hide access latency

typical latency

instruction ~0.25 ns 0.25 ns

RAM ~100 ns 100 ns

solid state drive (SSD) ~0.2 ms 200,000 ns

hard disk drive (HDD) ~2 ms 2,000,000 ns

wired ethernet (round-trip) ~1 ms 1,000,000 ns

wifi latency (round-trip) ~10 ms 10,000,000 ns

same-city internet (round-trip) ~5 ms 5,000,000 ns

same-continent internet (round-trip) ~25 ms 25,000,000 ns

transatlantic internet (round-trip) ~100 ms 100,000,000 ns

4

Examples of caches

SSDs have internal RAM caches (typically 0-4 GB)

the operating system caches files in memory

large content providers (Google, Amazon, Netflix, Cloudflare) have caches all over the world

ping math.uwaterloo.ca

PING math.uwaterloo.ca (129.97.206.16) 56(84) bytes of data.
64 bytes from ingress-p01.math.uwaterloo.ca (129.97.206.16): icmp_seq=1 ttl=43 time=110 ms
64 bytes from ingress-p01.math.uwaterloo.ca (129.97.206.16): icmp_seq=2 ttl=43 time=110 ms
64 bytes from ingress-p01.math.uwaterloo.ca (129.97.206.16): icmp_seq=3 ttl=43 time=111 ms
64 bytes from ingress-p01.math.uwaterloo.ca (129.97.206.16): icmp_seq=4 ttl=43 time=111 ms

ping google.com.au

PING google.com.au (142.251.209.3) 56(84) bytes of data.
64 bytes from mil04s50-in-f3.1e100.net (142.251.209.3): icmp_seq=1 ttl=115 time=12.2 ms
64 bytes from mil04s50-in-f3.1e100.net (142.251.209.3): icmp_seq=2 ttl=115 time=14.6 ms
64 bytes from mil04s50-in-f3.1e100.net (142.251.209.3): icmp_seq=3 ttl=115 time=12.9 ms
64 bytes from mil04s50-in-f3.1e100.net (142.251.209.3): icmp_seq=4 ttl=115 time=11.8 ms

5

Examples of pipelines

Storage devices:

SSDs typically access data in “pages” of 4096 bytes

0.2ms SSD latency would imply a max speed of 20 MB / s

instead SSDs routinely read and write 500 MB / s

Networks:

Network packets are typically 1500 bytes

10ms WiFi latency would imply 150 KB / s

instead most WiFi networks do at least 10,000 KB / s

Browsers:

Google Chrome maintains up to 6 connections per domain
6

Benchmarking

7

time ./application

real: elapsed “real” (wall-clock) time

user: time spent in user mode (running ./application code)

sys: time spent in system mode (running OS kernel code)

user + sys real (there may be other applications running)

real 0m2.501s
user 0m2.498s
sys 0m0.001s

≲

8

time head -n 1000000 /dev/random > /dev/null

real 0m0.444s
user 0m0.066s
sys 0m0.377s

9

Variance

time head -n 1000000 /dev/random > /dev/null

real 0m0.442s
user 0m0.070s
sys 0m0.371s

time head -n 1000000 /dev/random > /dev/null

real 0m0.448s
user 0m0.066s
sys 0m0.381s

time head -n 1000000 /dev/random > /dev/null

real 0m0.445s
user 0m0.056s
sys 0m0.388s

10

Reasons for variance

throttling for temperature and power limits

(CPU adapts speed to avoid overheating or exceeding power supply capabilities)

interactions with devices

(OS has in-memory caches for files, storage devices have internal memory caches)

other processes

(must share resources)

11

top htop ps aux

(271 processes)
12

Effect of file caches

time md5sum 2GB_file

860a0023a913fd3fa4b6ad8bfbdd2c62 2GB_file

real 0m5.904s
user 0m4.062s
sys 0m0.560s

time md5sum 2GB_file

860a0023a913fd3fa4b6ad8bfbdd2c62 2GB_file

real 0m4.029s
user 0m3.674s
sys 0m0.331s

13

Inaccuracies

executable startup is slow

initialization adds overhead

input and output are slow

14

Executable startup is slow

int main() { return 0; }

clang -O3 -o main main.c
time ./main

real 0m0.003s
user 0m0.000s
sys 0m0.002s

time python -c 'exit(0)'

real 0m0.030s
user 0m0.023s
sys 0m0.008s

 we cannot accurately benchmark application that only take a few milliseconds.→

15

Initialization adds overhead

time glpsol LP_576x18380.mps

real 0m0.256s
user 0m0.246s
sys 0m0.010s

time glpsol --check LP_576x18380.mps

real 0m0.168s
user 0m0.161s
sys 0m0.008s

What are we really measuring?

The speed of the MPS file parser, not the simplex algorithm.

16

Input and output are slow

def riemann_zeta(s):
r = 0.0

for i in range(1, 1000000):
r += 1 / (i ** s)

return r

ζ(2) = (pi ** 2) / 6
print('pi ≈ ', (riemann_zeta(2) * 6) ** 0.5)

time python zeta.py

pi ≈ 3.141591698659554

real 0m0.124s
user 0m0.118s
sys 0m0.006s

17

def riemann_zeta(s):
r = 0.0

for i in range(1, 1000000):
r = r + 1 / (i ** s)
print('r = ', r)

return r

ζ(2) = (pi ** 2) / 6
print('pi ≈ ', (riemann_zeta(2) * 6) ** 0.5)

time python zeta.py

r = 1.0
r = 1.25
r = 1.3611111111111112
r = 1.4236111111111112
r = 1.4636111111111112
r = 1.4913888888888889
r = 1.511797052154195

[...]

r = 1.6449330668467699
r = 1.64493306684777
pi ≈ 3.141591698659554

real 0m3.768s
user 0m2.516s
sys 0m0.999s

18

Aggregate measures

if we benchmark our code on different inputs, we may want to use

total time / average time

geometric mean

or other aggregate measures

or some visualization (bar graphs, performance profiles, etc.)

but beware: all aggregate measures are biased

19

Input 1 Input 2 Input 3 Average

Version A 2530s 2300s 12s 1614s

Version B 2535s 1.002x 2304s 1.002x 6s 0.5x 1615s

20

Static instrumentation

21

we may want to benchmark specific parts of our code

to circumvent executable startup, initialization, and input/output

to benchmark parts of the code that run quickly

to find bottlenecks

for that, we need to add timing instrumentation to our code

22

About bottlenecks

“Premature optimization is the root of all evil”

– Donald Knuth
“Structured Programming With GoTo Statements”

1974

23

function_A() 12% time 500 lines of code

function_B() 60% time 20 lines of code

function_C() 18% time 80 lines of code

all the rest 10% time 2000 lines of code

24

time.time()

initialize()
function_A()
function_B()
function_C()
cleanup()

import time

t0 = time.time()
initialize()

t1 = time.time()
function_A()

t2 = time.time()
function_B()

t3 = time.time()
function_C()

t4 = time.time()
cleanup()

t5 = time.time()

print(f'total time: {t5 - t0:16.6f}')

print(f'function_A: {t2 - t1:16.6f}')
print(f'function_B: {t3 - t2:16.6f}')
print(f'function_C: {t4 - t3:16.6f}')

print(f' rest: {(t5 - t0) - (t4 - t1):16.6f}')

25

clock_gettime()

int main()
{

initialize();
function_A();
function_B();
function_C();
cleanup();
return 0;

}

int main()
{

struct timespec t0, t1, t2, t3, t4, t5;

clock_gettime(CLOCK_MONOTONIC, &t0);
initialize();

clock_gettime(CLOCK_MONOTONIC, &t1);
function_A();

clock_gettime(CLOCK_MONOTONIC, &t2);
function_B();

clock_gettime(CLOCK_MONOTONIC, &t3);
function_C();

clock_gettime(CLOCK_MONOTONIC, &t4);
cleanup();

clock_gettime(CLOCK_MONOTONIC, &t5);

print_all_clocks(&t0, &t1, &t2, &t3, &t4, &t5);
return 0;

}

26

Cumulative time

initialize()

for i in range(1000000):
function_A()
function_B()
function_C()

cleanup()

import time.time

initialize()
tA, tB, tC = 0

for i in range(1000000):
t0 = time.time()
function_A()

t1 = time.time()
function_B()

t2 = time.time()
function_C()

t3 = time.time()

tA += (t1 - t0)
tB += (t2 - t1)
tC += (t3 - t2)

cleanup()

Caveat: measuring time takes time!

 time.time(): ~40 ns (and this value fluctuates!)
27

Microbenchmarks

What do we do if function_A() takes much less time than time.time()?

import time.time

initialize()
tA, tB, tC = 0

for i in range(1000000):
t0 = time.time()
function_A()

t1 = time.time()
function_B()

t2 = time.time()
function_C()

t3 = time.time()

tA = tA + (t1 - t0)
tB = tB + (t2 - t1)
tC = tC + (t3 - t2)

cleanup()

Microbenchmark for function_A():

import time.time

initialize()

t0 = time.time()

for i in range(50000000):
function_A()

t1 = time.time()

cleanup()

28

Microbenchmarks limitations

It may not make sense to call function_A() in isolation

Take sin(x) for example: which value of x do we choose?

Always the same?

Are we sure sin(0) takes as much time as sin(0.1)?

A random value for x?

What if generating pseudo-random values takes more time than sin()?

What about caches?

Caches will be “hot” (already filled with relevant data)

Microbenchmarking presents an over-optimistic picture of memory access times

29

Automated instrumentation:
Profilers

30

gprof

Add “-pg” to gcc/clang parameters

gcc -O3 -o app app.c -pg

Run the application

./app

Generate report

gprof app

31

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
63.77 3.82 3.82 1 3.82 4.24 tree_dfs
28.88 5.55 1.73 1 1.73 1.73 lut_build
4.17 5.80 0.25 1523737 0.00 0.00 aux_h_merge
2.84 5.97 0.17 10331 0.00 0.00 aux_d_sort_swapper
0.33 5.99 0.02 tree_prune
0.00 5.99 0.00 6715 0.00 0.00 aux_h_sort
0.00 5.99 0.00 706 0.00 0.00 tree_gc
0.00 5.99 0.00 6 0.00 0.00 dict_append_file
0.00 5.99 0.00 1 0.00 0.00 dict_filter_dupes
0.00 5.99 0.00 1 0.00 0.00 lut_hash_word
0.00 5.99 0.00 1 0.00 0.00 solver_connected
0.00 5.99 0.00 1 0.00 5.97 tree_build

32

Pros

Easy to use

Exhaustive profile information

Generally low overhead

Cons

Overhead increases when bottlenecks are in small, short functions (up to 2x runtime)

Limited accuracy

33

Hardware performance counters

34

The simplest hardware-aided performance-measuring tool is:

the time stamp counter (TSC)

Introduced by Intel with the Pentium architecture (1993)

Similar feature available on ARM since ARMv7 (1996)

Special integer register

Incremented by one at a constant rate (e.g. every clock cycle)

Reading this register has high latency (>10 cycles)

Useful for microbenchmarks and instrumentation

time.time() / clock_gettime() use this internally

35

More complex performance counters

Since then, Intel and ARM have added many more performance counters:

executed (“retired”) instructions

branches

successfully predicted

mispredicted branches

memory accesses

found in L1 cache

L1 misses, found in L2 cache

L2 misses, found in (last-level) L3 cache

L3 misses, found in main memory

TLB (page table cache) hits

TLB misses

Pros

always measured

no performance penalty

no interference with normal execution

Cons

only an aggregate measure (totals)

36

Linux perf

perf stat ./application

Performance counter stats for './application':

3,216.90 msec task-clock # 1.000 CPUs utilized
8 context-switches # 2.487 /sec
1 cpu-migrations # 0.311 /sec

6,205 page-faults # 1.929 K/sec
9,442,508,623 cycles # 2.935 GHz (52.90%)
7,596,331,032 instructions # 0.80 insn per cycle (58.81%)
1,086,117,213 branches # 337.629 M/sec (58.84%)

1,085,287 branch-misses # 0.10% of all branches (58.87%)
2,162,685,901 L1-dcache-loads # 672.289 M/sec (58.87%)
1,079,393,101 L1-dcache-load-misses # 49.91% of all L1-dcache accesses (58.88%)
1,069,062,732 LLC-loads # 332.327 M/sec (58.87%)

6,537,301 LLC-load-misses # 0.61% of all L1-icache accesses (23.50%)
2,161,850,109 dTLB-loads # 672.029 M/sec (23.50%)

896,301 dTLB-load-misses # 0.04% of all dTLB cache accesses (23.50%)
9,051,173 dTLB-stores # 2.814 M/sec (23.50%)

81,624 dTLB-store-misses # 25.374 K/sec (23.50%)

3.217829387 seconds time elapsed

3.167788000 seconds user
0.022723000 seconds sys

37

