
Benchmarking and instrumentation
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More caches and pipelines
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recall that memory is virtualized

a virtual address  hardware address translation is necessary for every memory access

the translation uses a page table

the page table is stored in memory

hence at least two effective memory accesses per memory fetch instruction?

→

Solution: part of the page table is cached in the CPU

the “Translation Lookaside Buffer” (TLB)
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Caches and pipelines are used at various levels to hide access latency

typical latency

instruction ~0.25 ns 0.25 ns

RAM ~100 ns 100    ns

solid state drive (SSD) ~0.2 ms 200,000    ns

hard disk drive (HDD) ~2 ms 2,000,000    ns

wired ethernet (round-trip) ~1 ms 1,000,000    ns

wifi latency (round-trip) ~10 ms 10,000,000    ns

same-city internet (round-trip) ~5 ms 5,000,000    ns

same-continent internet (round-trip) ~25 ms 25,000,000    ns

transatlantic internet (round-trip) ~100 ms 100,000,000    ns
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Examples of caches

SSDs have internal RAM caches (typically 0-4 GB)

the operating system caches files in memory

large content providers (Google, Amazon, Netflix, Cloudflare) have caches all over the world

ping math.uwaterloo.ca

PING math.uwaterloo.ca (129.97.206.16) 56(84) bytes of data.
64 bytes from ingress-p01.math.uwaterloo.ca (129.97.206.16): icmp_seq=1 ttl=43 time=110 ms
64 bytes from ingress-p01.math.uwaterloo.ca (129.97.206.16): icmp_seq=2 ttl=43 time=110 ms
64 bytes from ingress-p01.math.uwaterloo.ca (129.97.206.16): icmp_seq=3 ttl=43 time=111 ms
64 bytes from ingress-p01.math.uwaterloo.ca (129.97.206.16): icmp_seq=4 ttl=43 time=111 ms

ping google.com.au

PING google.com.au (142.251.209.3) 56(84) bytes of data.
64 bytes from mil04s50-in-f3.1e100.net (142.251.209.3): icmp_seq=1 ttl=115 time=12.2 ms
64 bytes from mil04s50-in-f3.1e100.net (142.251.209.3): icmp_seq=2 ttl=115 time=14.6 ms
64 bytes from mil04s50-in-f3.1e100.net (142.251.209.3): icmp_seq=3 ttl=115 time=12.9 ms
64 bytes from mil04s50-in-f3.1e100.net (142.251.209.3): icmp_seq=4 ttl=115 time=11.8 ms
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Examples of pipelines

Storage devices:

SSDs typically access data in “pages” of 4096 bytes

0.2ms SSD latency would imply a max speed of 20 MB / s

instead SSDs routinely read and write 500 MB / s

Networks:

Network packets are typically 1500 bytes

10ms WiFi latency would imply 150 KB / s

instead most WiFi networks do at least 10,000 KB / s

Browsers:

Google Chrome maintains up to 6 connections per domain
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Benchmarking
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time ./application

real: elapsed “real” (wall-clock) time

user: time spent in user mode (running ./application code)

sys: time spent in system mode (running OS kernel code)

user + sys  real (there may be other applications running)

real    0m2.501s
user    0m2.498s
sys     0m0.001s

≲
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time head -n 1000000 /dev/random > /dev/null

real    0m0.444s
user    0m0.066s
sys     0m0.377s
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Variance

time head -n 1000000 /dev/random > /dev/null

real    0m0.442s
user    0m0.070s
sys     0m0.371s

time head -n 1000000 /dev/random > /dev/null

real    0m0.448s
user    0m0.066s
sys     0m0.381s

time head -n 1000000 /dev/random > /dev/null

real    0m0.445s
user    0m0.056s
sys     0m0.388s
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Reasons for variance

throttling for temperature and power limits

(CPU adapts speed to avoid overheating or exceeding power supply capabilities)

interactions with devices

(OS has in-memory caches for files, storage devices have internal memory caches)

other processes

(must share resources)
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top htop ps aux

(271 processes)
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Effect of file caches

time md5sum 2GB_file

860a0023a913fd3fa4b6ad8bfbdd2c62  2GB_file

real    0m5.904s
user    0m4.062s
sys     0m0.560s

time md5sum 2GB_file

860a0023a913fd3fa4b6ad8bfbdd2c62  2GB_file

real    0m4.029s
user    0m3.674s
sys     0m0.331s
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Inaccuracies

executable startup is slow

initialization adds overhead

input and output are slow
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Executable startup is slow

int main() { return 0; }

clang -O3 -o main main.c
time ./main

real    0m0.003s
user    0m0.000s
sys     0m0.002s

time python -c 'exit(0)'

real    0m0.030s
user    0m0.023s
sys     0m0.008s

 we cannot accurately benchmark application that only take a few milliseconds.→
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Initialization adds overhead

time glpsol LP_576x18380.mps

real    0m0.256s
user    0m0.246s
sys     0m0.010s

time glpsol --check LP_576x18380.mps

real    0m0.168s
user    0m0.161s
sys     0m0.008s

What are we really measuring?

The speed of the MPS file parser, not the simplex algorithm.
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Input and output are slow

def riemann_zeta(s):
r = 0.0

for i in range(1, 1000000):
r += 1 / (i ** s)

return r

# ζ(2) = (pi ** 2) / 6
print('pi ≈ ', (riemann_zeta(2) * 6) ** 0.5)

time python zeta.py

pi ≈  3.141591698659554

real    0m0.124s
user    0m0.118s
sys     0m0.006s
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def riemann_zeta(s):
r = 0.0

for i in range(1, 1000000):
r = r + 1 / (i ** s)
print('r = ', r)

return r

# ζ(2) = (pi ** 2) / 6
print('pi ≈ ', (riemann_zeta(2) * 6) ** 0.5)

time python zeta.py

r =  1.0
r =  1.25
r =  1.3611111111111112
r =  1.4236111111111112
r =  1.4636111111111112
r =  1.4913888888888889
r =  1.511797052154195

[...]

r =  1.6449330668467699
r =  1.64493306684777
pi ≈  3.141591698659554

real    0m3.768s
user    0m2.516s
sys     0m0.999s
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Aggregate measures

if we benchmark our code on different inputs, we may want to use

total time / average time

geometric mean

or other aggregate measures

or some visualization (bar graphs, performance profiles, etc.)

but beware: all aggregate measures are biased

19



Input 1 Input 2 Input 3 Average

Version A 2530s 2300s 12s 1614s

Version B 2535s 1.002x 2304s 1.002x 6s 0.5x 1615s
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Static instrumentation
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we may want to benchmark specific parts of our code

to circumvent executable startup, initialization, and input/output

to benchmark parts of the code that run quickly

to find bottlenecks

for that, we need to add timing instrumentation to our code

22



About bottlenecks

“Premature optimization is the root of all evil”

– Donald Knuth
“Structured Programming With GoTo Statements”

1974
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function_A() 12% time 500 lines of code

function_B() 60% time 20 lines of code

function_C() 18% time 80 lines of code

all the rest 10% time 2000 lines of code
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time.time()

initialize()
function_A()
function_B()
function_C()
cleanup()

import time

t0 = time.time()
initialize()

t1 = time.time()
function_A()

t2 = time.time()
function_B()

t3 = time.time()
function_C()

t4 = time.time()
cleanup()

t5 = time.time()

print(f'total time: {t5 - t0:16.6f}')

print(f'function_A: {t2 - t1:16.6f}')
print(f'function_B: {t3 - t2:16.6f}')
print(f'function_C: {t4 - t3:16.6f}')

print(f'      rest: {(t5 - t0) - (t4 - t1):16.6f}')
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clock_gettime()

int main()
{

initialize();
function_A();
function_B();
function_C();
cleanup();
return 0;

}

int main()
{

struct timespec t0, t1, t2, t3, t4, t5;

clock_gettime(CLOCK_MONOTONIC, &t0);
initialize();

clock_gettime(CLOCK_MONOTONIC, &t1);
function_A();

clock_gettime(CLOCK_MONOTONIC, &t2);
function_B();

clock_gettime(CLOCK_MONOTONIC, &t3);
function_C();

clock_gettime(CLOCK_MONOTONIC, &t4);
cleanup();

clock_gettime(CLOCK_MONOTONIC, &t5);

print_all_clocks(&t0, &t1, &t2, &t3, &t4, &t5);
return 0;

}
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Cumulative time

initialize()

for i in range(1000000):
function_A()
function_B()
function_C()

cleanup()

import time.time

initialize()
tA, tB, tC = 0

for i in range(1000000):
t0 = time.time()
function_A()

t1 = time.time()
function_B()

t2 = time.time()
function_C()

t3 = time.time()

tA += (t1 - t0)
tB += (t2 - t1)
tC += (t3 - t2)

cleanup()

Caveat: measuring time takes time!

 time.time(): ~40 ns (and this value fluctuates!)
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Microbenchmarks

What do we do if function_A() takes much less time than time.time()?

import time.time

initialize()
tA, tB, tC = 0

for i in range(1000000):
t0 = time.time()
function_A()

t1 = time.time()
function_B()

t2 = time.time()
function_C()

t3 = time.time()

tA = tA + (t1 - t0)
tB = tB + (t2 - t1)
tC = tC + (t3 - t2)

cleanup()

Microbenchmark for function_A():

import time.time

initialize()

t0 = time.time()

for i in range(50000000):
function_A()

t1 = time.time()

cleanup()
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Microbenchmarks limitations

It may not make sense to call function_A() in isolation

Take sin(x) for example: which value of x do we choose?

Always the same?

Are we sure sin(0) takes as much time as sin(0.1)?

A random value for x?

What if generating pseudo-random values takes more time than sin()?

What about caches?

Caches will be “hot” (already filled with relevant data)

Microbenchmarking presents an over-optimistic picture of memory access times
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Automated instrumentation:
Profilers
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gprof

Add “-pg” to gcc/clang parameters

gcc -O3 -o app app.c -pg

Run the application

./app

Generate report

gprof app
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Flat profile:

Each sample counts as 0.01 seconds.
%   cumulative   self              self     total
time   seconds   seconds    calls   s/call   s/call  name
63.77      3.82     3.82        1     3.82     4.24  tree_dfs
28.88      5.55     1.73        1     1.73     1.73  lut_build
4.17      5.80     0.25  1523737     0.00     0.00  aux_h_merge
2.84      5.97     0.17    10331     0.00     0.00  aux_d_sort_swapper
0.33      5.99     0.02                             tree_prune
0.00      5.99     0.00     6715     0.00     0.00  aux_h_sort
0.00      5.99     0.00      706     0.00     0.00  tree_gc
0.00      5.99     0.00        6     0.00     0.00  dict_append_file
0.00      5.99     0.00        1     0.00     0.00  dict_filter_dupes
0.00      5.99     0.00        1     0.00     0.00  lut_hash_word
0.00      5.99     0.00        1     0.00     0.00  solver_connected
0.00      5.99     0.00        1     0.00     5.97  tree_build
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Pros

Easy to use

Exhaustive profile information

Generally low overhead

Cons

Overhead increases when bottlenecks are in small, short functions (up to 2x runtime)

Limited accuracy
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Hardware performance counters
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The simplest hardware-aided performance-measuring tool is:

the time stamp counter (TSC)

Introduced by Intel with the Pentium architecture (1993)

Similar feature available on ARM since ARMv7 (1996)

Special integer register

Incremented by one at a constant rate (e.g. every clock cycle)

Reading this register has high latency (>10 cycles)

Useful for microbenchmarks and instrumentation

time.time() / clock_gettime() use this internally
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More complex performance counters

Since then, Intel and ARM have added many more performance counters:

executed (“retired”) instructions

branches

successfully predicted

mispredicted branches

memory accesses

found in L1 cache

L1 misses, found in L2 cache

L2 misses, found in (last-level) L3 cache

L3 misses, found in main memory

TLB (page table cache) hits

TLB misses

Pros

always measured

no performance penalty

no interference with normal execution

Cons

only an aggregate measure (totals)
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Linux perf

perf stat ./application

Performance counter stats for './application':

3,216.90 msec task-clock                       #    1.000 CPUs utilized
8      context-switches                 #    2.487 /sec
1      cpu-migrations                   #    0.311 /sec

6,205      page-faults                      #    1.929 K/sec
9,442,508,623      cycles                           #    2.935 GHz                         (52.90%)
7,596,331,032      instructions                     #    0.80  insn per cycle              (58.81%)
1,086,117,213      branches                         #  337.629 M/sec                       (58.84%)

1,085,287      branch-misses                    #    0.10% of all branches             (58.87%)
2,162,685,901      L1-dcache-loads                  #  672.289 M/sec                       (58.87%)
1,079,393,101      L1-dcache-load-misses            #   49.91% of all L1-dcache accesses   (58.88%)
1,069,062,732      LLC-loads                        #  332.327 M/sec                       (58.87%)

6,537,301      LLC-load-misses                  #    0.61% of all L1-icache accesses   (23.50%)
2,161,850,109      dTLB-loads                       #  672.029 M/sec                       (23.50%)

896,301      dTLB-load-misses                 #    0.04% of all dTLB cache accesses  (23.50%)
9,051,173      dTLB-stores                      #    2.814 M/sec                       (23.50%)

81,624      dTLB-store-misses                #   25.374 K/sec                       (23.50%)

3.217829387 seconds time elapsed

3.167788000 seconds user
0.022723000 seconds sys
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