
Tools for correctness, part 1

1

2

We are here

Part 1: How computers works

Boolean logic, integers

Instructions

Memory

Part 2: So�ware development

Compiling (clang, make, …)

Architectures, portability (ABIs, …)

Code management (regex, git)

Part 3: Correctness

Specifications

Documentation, testing TODAY

Static & dynamic analysis, debugging

Part 4: Performance

CPU pipelines, caches

Data structures

Parallel computation

←

3

Documentation

4

Documentation is GOOD

Allows others to understand your code

Allows you (in a few weeks) to understand your own code

Helps make your thought process and assumptions explicit

5

Types of documentation

Reference manuals

Complete, authoritative source of information

(if the code does not do what the manual says, then the code is wrong)

Must use precise language (even at the cost of legibility)

Examples: “man” pages, ABI docs, C standard, IEEE-754 specifications

Tutorials

Beginner-friendly. Emphasize getting things to work quickly

(even at the cost of completeness)

Examples: various books (K&R C, Think Python) and intro material

Questions and answers (Q&A)

Not exhaustive

Quick answers to frequently asked questions

Examples: Stack Overflow
6

Automated documentation

Automated documentation systems

read and parse source code

find functions (methods, classes, …)

create a (PDF or webpage) document containing function signatures

specially-formatted comments in the source code are copied into the documentation

along with the corresponding function signatures

7

Doxygen

8

9

Python docstrings

10

Automated documentation systems

General:

doxygen

sphinx

Python-specific:

pdoc

PyDoc

pydoctor

11

Assertions

12

Assertions are used to document (and check) assumptions made in the code.

An assertion failure

should correspond to a bug in your code,

in Python, raises AssertionError exception

in C, triggers an immediate crash (abort()) of your program.

13

def gcd(a, b):
if a < b:

a, b = b, a

while b != 0:
assert a >= b # <---- this should always be true
a, b = b, a % b

return a

14

#include <assert.h>

int gcd(int a, int b)
{

if (a < b) {
int r = a;
a = b;
b = r;

}

while (b != 0) {
assert(a >= b); // <---- this should always be true

int r = a % b;
a = b;
b = r;

}

return a;
}

15

Disabling assertions

In Python:

python -O script.py

In C:

(equivalent to

at the beginning of every file)

clang -D NDEBUG -Wall -O3 -o main main.c

#define NDEBUG

16

Error vs assertion failure

an error happens when, for external reasons, your program cannot run

examples: out of memory, file cannot be read, network unreachable

an assertion fails if a fundamental assumption in your code is violated

indicates a bug in your code

17

Testing

18

/*
This functions returns:
0 if both of its arguments are zero
nonzero if one or both of its arguments are nonzero

*/
int either_nonzero(int a, int b)
{

if (a != 0)
a = 1;

if (b != 0)
b = 1;

return (a | b) == 1;
}

void run_tests_0()
{

assert(either_nonzero(5, 5) != 0);
assert(either_nonzero(0, 5) != 0);
printf("OK\n");

}

19

Test coverage

line coverage:

is every line of code covered by some test case?

branch coverage:

for every conditional branch, is there a test covering each of the two possibilities

(taking the branch or not taking it)?

path coverage:

is there a test covering all possible execution paths?

20

gcc -Wall -O3 --coverage -c -o either_nonzero.o either_nonzero.c
gcc -Wall -O3 --coverage -o run main.c either_nonzero.o

./run_tests

OK

gcov either_nonzero.c

File 'either_nonzero.c'
Lines executed:100.00% of 4
Creating 'either_nonzero.c.gcov'

Lines executed:100.00% of 4

gcov -b either_nonzero.c

File 'either_nonzero.c'
Lines executed:100.00% of 4
Branches executed:100.00% of 4
Taken at least once:75.00% of 4
No calls
Creating 'either_nonzero.c.gcov'

Lines executed:100.00% of 4

21

function either_nonzero called 2 returned 100% blocks executed 100%
2: 4:int either_nonzero(int a, int b)
-: 5:{
2: 6: if (a != 0)

branch 0 taken 50% (fallthrough)
branch 1 taken 50%

-: 7: a = 1;
-: 8:
2: 9: if (b != 0)

branch 0 taken 100% (fallthrough)
branch 1 taken 0%

-: 10: b = 1;
-: 11:
2: 12: return (a | b) == 1;
-: 13:}

22

/*
This functions returns:
0 if both of its arguments are zero
nonzero if one or both of its arguments are nonzero

*/
int either_nonzero(int a, int b)
{

if (a != 0)
a = 1;

if (b != 0)
b = 1;

return (a | b) == 1;
}

void run_tests_0()
{

assert(either_nonzero(5, 5) != 0);
assert(either_nonzero(0, 5) != 0);
printf("OK\n");

}

23

Line coverage vs. branch coverage

Line coverage: 100% Branch coverage: 50%  

/*
This functions returns:
0 if both of its arguments are zero
nonzero if one or both of its arguments are nonzero

*/
int either_nonzero(int a, int b)
{

if (a != 0)
a = 1;

if (b != 0)
b = 1;

return (a | b) == 1;
}

void run_tests_x()
{

assert(either_nonzero(5, 5) != 0);
printf("OK\n");

}

24

Branch coverage vs. path coverage

Line coverage: 100% Branch coverage: 100% Path coverage: 75%

/*
This functions returns:
0 if both of its arguments are zero
nonzero if one or both of its arguments are nonzero

*/
int either_nonzero(int a, int b)
{

if (a != 0)
a = 1;

if (b != 0)
b = 1;

return (a | b) == 1;
}

void run_tests_y()
{

assert(either_nonzero(0, 0) == 0);
assert(either_nonzero(0, 5) != 0);
assert(either_nonzero(5, 0) != 0);
printf("OK\n");

}

25

How does it work?

gcc -Wall -O3 --coverage -c -o either_nonzero.o either_nonzero.c

/*
This functions returns:
0 if both of its arguments are zero
nonzero if one or both of its arguments are nonzero

*/
int either_nonzero(int a, int b)
{

line_covered(6);
if (a != 0) { // line 6

branch_covered(6, 1);
line_covered(7);
a = 1; // line 7

} else {
branch_covered(6, 0);

}

line_covered(9);
if (b != 0) { // line 9

branch_covered(9, 1);
line_covered(10);
b = 1; // line 10

} else {
branch_covered(9, 0);

}

line_covered(12);
return (a | b) == 1; // line 12

}

26

Limitations of test coverage measures (1)

/*
This functions returns:
0 if both of its arguments are zero
nonzero if one or both of its arguments are nonzero

*/
int either_nonzero_WRONG_1(int a, int b)
{

if (a != 0)
a = 1;

if (b != 0)
b = 1;

return (a + b) == 1;
}

Line coverage: 100% Branch coverage: 100% Path coverage: 75%

void run_tests_1()
{

assert(either_nonzero_WRONG_1(0, 0) == 0);
assert(either_nonzero_WRONG_1(0, 5) != 0);
assert(either_nonzero_WRONG_1(5, 0) != 0);
//assert(either_nonzero_WRONG_1(5, 5) != 0); // <-- this one fails
printf("OK\n");

}

27

Limitations of test coverage measures (2)

/*
This functions returns:
0 if both of its arguments are zero
nonzero if one or both of its arguments are nonzero

*/
int either_nonzero_WRONG_2(int a, int b)
{

return a + b;
}

Line coverage: 100% Branch coverage: 100% Path coverage: 100%

void run_tests_2()
{

assert(either_nonzero_WRONG_2(0, 0) == 0);
assert(either_nonzero_WRONG_2(0, 5) != 0);
assert(either_nonzero_WRONG_2(5, 0) != 0);
assert(either_nonzero_WRONG_2(5, 5) != 0);
//assert(either_nonzero_WRONG_2(5, -5) != 0); // <-- this one fails
printf("OK\n");

}

28

Fuzzing

29

We need good tests

Assertions and tests are useful

but only if we have good test cases

and enough of them

 How do we generate good tests?⇒

30

On a basic level, a fuzzer proceeds as follows:

1. take a (mostly valid) example input file

2. run the tested program with that input file

3. check for crashes (e.g. segmentation fault, assertion failures)

4. modify the input file:

random modifications

truncations, duplications

mergers with other example input files

5. go back to 2
31

Advanced fuzzers

use test coverage techniques

to determine which input files are “interesting”,

in that they cover previously-uncovered source code

use static analysis techniques

to determine input file modifications that could trigger specific code branches

32

AFL++

open source project ()

takes as an input a directory with many (mostly valid) example input files

generates modified input files that (try to) yield crashes

https://aflplus.plus/

afl-fuzz -i directory/with/example/inputs/ -o directory/for/crash/files/ -- ./executable @@

33

https://aflplus.plus/

