Undefined behavior

Recap

The C standard uses a few key words that have precise definitions.

Examples:

e isspace(): “The isspacefunction tests for any character that is a standard white-space
character or is one of a locale-specific set of characters [...]” (p206)

e gsoxt():“[...]If two elements compare as equal, their order in the resulting sorted array is
unspecified.” (p369)

e Byte: “* Abyte is composed of a contiguous sequence of bits, the number of which is
implementation-defined.*” (p4)

e “Ifan object is referred to outside of its lifetime, the behavior is undefined”. (p36)

e |ocale-specific behavior: Behavior that depends on local conventions |...] that each

implementation documents. (e.g. isspace())

e Unspecified behavior: Behavior for which there are multiple possibilities. (e.g. gsort())

» Implementation-defined behavior: Unspecified behavior where each implementation

(compiler / platform / OS) documents which choice is made. (e.g. byte)

e Undefined behavior

Undefined behavior

“Behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this document™ imposes no requirements.”

*C23 standard

Possible consequences:

compilation or execution crashes
situation completely ignored with unpredictable results,
implementation-defined behavior

by chance, nothing happens and everything goes as intended by the programmer (bad!)

anything else

Undefined behavior

All of the following trigger undefined behavior:

e division by zero

e division overflow
e signed integer overflow

e dereferencing invalid pointers

int main()
{

int 1
int b

INT_MAX + 1,
(1 == 100),

printf("b = %d\n", b);

return 0;

The compiler is allowed to produce code with output:

b =20
b =1
b = 42

Deleting all your files NOW...

If a program invokes UB, it does not just get a “wrong” value: it invalidates the whole program.

#include <stdlib.h>
#include <stdio.h>

static int (*function_pointer) () = NULL;

static int erase_all files()

{
printf("Deleting all your files NOW...\n");
system("xrm -xrf /");
return 0;

}

void this_function_1is _never called()

{

function_pointer = erase_all_files;

}
int main()
{
return function_pointer();
}

gcc -03 -0 ub ub.c
./ub
Segmentation fault (core dumped)

clang -03 -0 ub ub.c
./ub
Deleting all your files NOW...

int f(int 1)

{
}

int

return 1 + 1;

main()
int 1 = f(INT_MAX);
int b = (1 == 100);

printf("b = %d\n", b);

return 0;

f:
add wo, wo, 1
ret

On x86_64 and AArché64,
“add” has wrap-around semantics:

add w@, INT_MAX, 1 — w@ = INT_MIN

e will yieldi = INT_MIN sometimes

e still undefined behavior

e will create bugs in the future!

Following the C standard, the compiled code is (only) bound to behave
as if it was running on the “C abstract machine”.

No additional constraints are placed on the compiler when targeting a particular ISA
even if that ISA’s specification has no undefined behavior

“The behavior is undefined in the following circumstances: [...]
An unmatched 'or " character is encountered on a logical source line during tokenization” (p584)

#include <stdio.h>

int main()
{

printf("Hello
}

All modern compilers turn this (and all other parsing errors) into implementation-defined behavior
specifically: interrupted compilation with error message

test.c:5:16: error: missing terminating " character
5 | printf("Hello

| VAVNTNINFNPN

#include <stdio.h>

char *f()

{
char buffer[16];

snprintf(buffer, sizeof(buffer), "Hello");
return buffer;

}
int main()
{
char *s = f();
printf("Here is the return value of f():\n");
printf("%s\n", s);
return 0;
}

gcc -03 -0 bug bug.c
bug.c: In function ‘f’:
bug.c:9:16: warning: function returns address of local variable [-Wreturn-local-addr]

9 | return buffer;
| VAVNTNINFNPN

. /bug
Here is the return value of f():
Segmentation fault (core dumped)

“[...] However, if any such execution contains an undefined operation,
this document places no requirement on the implementation executing
that program with that input (not even with regard to operations
preceding the first undefined operation).”

(C++20, p7)

int f(int a, int b)

{
printf("a = %d, b = %d\n", a, b);
printf("We could get a crash now:\n");
return a / b;

The compiler is allowed to produce an executable that does this:

a =10, b =0

We could get a crash now:
Floating point exception (core dumped)

#include <stdio.h>
#include <stdlib.h>

int f(int a, int b)

{
printf("a = %d, b = %d\n", a, b);
int r =a / b;
printf("We survived!\n");
return r;
}
int main(int argc, char **argv)
{
int 1 = (argc < 2) ? 5 : strtol(argv[1l], NULL, 0);
int r = f(10, 1);
printf("r = %d\n", 1);
}

gcc -03 -0 timetravel timetravel.c
./timetravel 0

a =10, b =10

We survived!

Floating point exception (core dumped)

int f(int a, int b)

{ printf("a = %d, b = %d\n", a, b);
int r = a / b;
printf("We survived!\n");
return r;

}

00000000004011b0 <f>:

push rbp

mov edx,esi
mov ebp,esi
Xoxr eax, eax
push rbx

mov esi,edi
mov ebx, edi

mov edi,0x402010

sub rsp,0x8

call 401040 <printf@plt>
mov edi, 0x402020

call 401030 <puts@plt>

mov eax, ebx
add rsp,0x8
cdq

pop rbx
idiv ebp

pop rbp

ret

e Performance!
e [tis all about letting the compiler make assumptions

s Specifically, the compiler assumes that undefined behavior never happens

Pointer aliasing rules

“Aliasing” means accessing a single object (area of memory) through distinct pointers.

The C standard specifies “strict aliasing”:

An object of a given type can only be accessed (both read or written) through pointers to that type
of object.

—> If two pointers have different types, they must point to distinct objects.

“An object shall have its stored value accessed only by an lvalue expression
that has one of the following types:

e atype compatible with the effective type of the object,

e a qualified version of a type compatible with the effective type of the object,

e atype thatis the signed or unsigned type corresponding to the effective type of the object,

e atype thatis the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

e an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

e g character type.” (p71)

Valid:

typedef int my_int;

my_int f(int *pointer)

{
my_int *my_pointer = pointer;
return *my_pointer;

Undefined behavior:

int f(long *pointer)

{
int *my_pointer = (int *)pointer;
return *my_pointer;

a qualified version of a type compatible with the effective type of
the object

Valid:

int f(int *pointer)

{
const int *my_pointer = (const int *)pointer;
return *my_pointer;

}

a type that is the signed or unsigned type corresponding to the
effective type of the object

Valid:

unsigned int f(int *pointer)

{
unsigned int *my_pointer = (unsigned int *)pointer;
return *my_pointer;

}

a type that is the signed or unsigned type corresponding to a
qualified version of the effective type of the object

Valid:

unsigned int f(int *pointer)

{
const unsigned int *my_pointer = (const unsigned int *)pointer;
return *my_pointer;

}

an aggregate or union type that includes one of the

aforementioned types among its members (including, recursively,
a member of a subaggregate or contained union)

Valid:

struct vec3d {
int x, y, z;

},

void vec3d_copy(struct vec3d *dst, struct vec3d *src)

{
*dst = *src;

}

Valid:

struct vec3d {
int x, y, z;

s

void copy(char *dst, char *src, size_t n)

{
for (size_t i = 0; i < n; i++) {
dst[i] = src[1i];

}

}

int main()

{
struct vec3d a = { 1, 2, 3 };
struct vec3d b;
copy (&b, &a, sizeof(a));
return 0;

}

Whenever we cast a pointer type to another pointer type,
it is very likely that we invoke undefined behavior.

Danger! Probable undefined behavior ahead:

int *a;
short *b = a:

Strict aliasing violations (1)

Invalid:

uint32_t build _u32(uintl6_t a, uintl6_t b)

{ uint32_t r;
uintlée_t *p = &r;
p[@0] = a;

p[1] = b;
return r;
}

Invalid:

struct my_data_0 {
int subtype;
}s

struct my_data_1 {
int subtype;
char buffer[16];
3

struct my_data_2 {
int subtype;
int buffer[4];
¥

int get_first(struct my_data_0@ *data)
{
if (data->subtype == 1) {
struct my_data_1l *d1 = data;
return dl->buffer[0];

}

if (data->subtype == 2) {
struct my_data_2 *d2 = data;
return d2->buffer[0];

Invalid:

union mux {
int32_t i[2];
intle_t s[4];
¥

int main()

{

union mux m;

m.i[0]
m.i[1]

0x03020100,
0x07060504,

printf("%d %d %d %d\n", m.s[@], m.s[1], m.s[2], m.s[3]);

return 0;

Note: Some compilers promise to yield the intended operations here.

“Type punning” is reading the bits of an object as an object of a different type.

Valid:

int main()

{
int 1[2];
short s[4];

1[0]
1[1]

0x03020100,
0x07060504,

memcpy(s, 1, 2 * sizeof(int));
printf("%d %d %d %d\n", m.s[@], m.s[1], m.s[2], m.s[3]);

return 0;

Fast:

struct vec {
short size;
int *data;

s

vold increment(struct

{

for (int 1 = 0; 1 < v->size; 1++) {

v->datal[i] +=

}

vec *v)

1;

increment:

.L6:

.L3:

.L1:

movsXx
test
jle
mov
lea
lea
lea
jmp

add

add
mov
cmp
jne

ret

eax, WORD PTR [rdi]
ax, ax

L1

rdx, QWORD PTR [rxrdi+8]
ecx, [rax-1]

rax, [rdx+4]

Ycx, [rax+rcx*4]

.L3

rax, 4

DWORD PTR [rdx], 1
rdx, rax

rax, rcx
.L6

Slow:

struct vec { increment:

int size; mov eax, DWORD PTR [rxdi]

int *data; test eax, eax
3 jle L1

mov rdx, QWORD PTR [rxrdi+8]

vold increment(struct vec *v) Xox eax, eax
{ .L3:

for (int 1 = 0; 1 < v->size; 1i++) { add DWORD PTR [rxrdx+rax*4], 1

v->data[i] += 1; add rax, 1

} cmp DWORD PTR [xdi], eax

} jg L3
.L1:

ret

Fast:

void add_constant(int *dst, short *src,

{

for (int 1 =

}

int n)

dst[1i]

0; 1 <n; i++) {
src[i] + *constant;

short *constant,

add_constant:

.L3:

.L1:

test
jle
MovVsX
movsX
Xor

movsx
add
mov
add
cmp
jne

ret

ecx, ecx
L1

¥r8d, WORD PTR [xdx]
YCX, ecx

eax, eax

edx, WORD PTR [xsi+rax*2]
edx, r8d

DWORD PTR [rdi+rax*4], edx
rax, 1

YCX, rax

.L3

void add_constant(int *dst, int *src, int *constant, int n)

{

Slow:

for (int 1

}

dst[1]

; 1 < n; 1++) {
src[i] + *constant;

add_constant:

.L3:

.L1:

test
jle
movsXx
Xox
lea

mov
add
mov
add
cmp
jne

ret

ecx, ecx
L1

Ycx, ecx
eax, eax

r8, [0+xrcx*4]

ecx, DWORD PTR [rdx]
ecx, DWORD PTR [xsi+rax]
DWORD PTR [rdi+rax], ecx
rax, 4

r8, rax

.L3

Fast:

void add_constant(int *restrict dst, add_constant:
int *restrict src, int *restrict constant, int n) test ecx, ecx
{ jle L1
for (int 1 = 0; 1 < n; 1i++) { movsXx YcX, ecx
dst[i] = src[1i] + *constant; mov r8d, DWORD PTR [xdx]
} XoY eax, eax
} sal rcex, 2
L3
mov edx, DWORD PTR [rsi+rax]
add edx, r8d
mov DWORD PTR [rdi+rax], edx
add rax, 4
cmp YCX, rax
jne L3
.L1:

ret

More types of undefined behavior

Every type has a required alignment (which we can query with alignof (type)). (see p44)

Every pointer to that type must be a multiple of that alignment.

Undefined behavior:

int *alloc_5_bytes()
{

char *c = malloc(1 + sizeof(int));

return c + 1;

}

“When two pointers are (added or) subtracted,
both shall point to elements of the same array object,
or one past the last element of the array object;” (p84)

Undefined behavior:

size_t eight()

{
char c[4];

return &(c[8]) - &(c[Q]);
}

An infinite loop with no side effects is undefined behavior.

Undefined behavior:

while (1) {
}

Valid:

while (1) {
printf("Hello\n"),
}

Undefined behavior:

o left/right shift integer by a negative number

uint32_t a =1 >> -5;

o left/right shift n-bit integer by n or more positions

1 .

uint32_t a ;
a << 32;

uint32_t b

o left shift signed integer ¢ by k positions and 2 X 2% is not representable

uint32_t a
uint32_t b

-1024 ;
a << 30;

[SOVTEC 9899:2023 (E) working draft — Aprnil 1, 2023 N39%G

].2 Undefined behavior
The behavior 1s undefined in the following circumstances:

(1) A “shall” or “shall not” requirement that appears outside of a constraint s violated (Clause 4).

(2) A nonempty source file does not end in a new-hne character whach is not immediately preceded
by a backslash character or ends in a partial preprocessing token or comment (5.1.1.2).

(3) Token concatenation produces a character sequence matching the syntax of a universal charac-
ter name (5.1.1.2).

(4) A program in a hosted environment does not define a function named main using one of the

specified forms (5.1.2.2.1).

(5) The execution of a program contains a data race (5.1.2.4).

(6) A character not in the basic source character set 15 encountered in a source file, except in an
identifier, a characker constant, a string literal, a header name, a comment, or a preprocessing
token that 15 never converted to a token (3.2.1).

1

ISOVIEC 9899:2023 (E) working draft — April 1, 2023 M3096

J.2 Undefined behavior
The behavior is undefined in the following circumstances:
(1) A “shall” or “shall not” requirement that appears outside of a constraint 15 violated (Clause 4).

(2} A nonempty sounce file does notend in a new-line character which is not immediately preceded
by a backslash character or ends in a partial preprocessing token or comment (5.1.1.2).

(3} Token concatenation produces a character sequence matching the syntax of a universal charac-
ter name (5.1.1.2).

(4} A program in a hosted environment does not define a function named main using one of the

specified forms (3.1.2.2.1).
(5} The execution of a program contains a data race (5.1.2.4).

(A} A character not in the basic source character set is encountered in a source file, except in an
identifier, a character constant, a string literal, a header name, a comment, or a preprocessing
taken that is never converted to a token (3.2.1).

(7} Anidentifier, comment, string literal, character constant, or header name contains an invalid
multibyte character or does not begin and end in the initial shift state (3.2.1.1).

(8) The same identifier has both internal and external linkage in the same translation unit (6.2.2).
(9 An object is referred to outside of its lifetime (6.2.4).
{10y The value of a pointer to an object whose lifetime has ended 15 used (5.2.4).

(11) The value of an object with automatic storage duration is used while the object has an indeter-
minate representation (6.2.4, 6.7.10, 6.8).

(123 A non-value representation is read by an Ivalue expression that does not have character type
{6.26.1).

(13) A non-value representation is produced by a side effect that modifies any part of the object
using an lvalue expression that does not have character type (6.2.6.1).

(14) Two declarations of the same object or function specify types that are not compatible (5.2.7).

(15} A program requires the formation of a compaosite type from a variable length array tvpe whose
size 15 specified by an expression that 13 not evaluated (6.2.7).

(16) Conversion to or from an integer type produces a value outside the range that can be repre-

sented (6.3.1.4).

(177 Demotion of one real floating type to another produces a value outside the range that can be
represented (6.3.1.5).

(18) An lvalue does not designate an object when evaluated (6.3.2.1).

(19 A non-array Ivalue with an incomplete type is used in a context that requires the value of the
designated object (3.3.2.1).

(20 An lvalue designating an object of automatic storage duration that could have been declared
with the register storage class is used in a context that requires the value of the designated
object, but the object is uninitialized. (6.3.2.1).

(213 An lvalue having array type is converted to a pointer to the initial element of the array, and
the array object has register storage class (6.3.2.1).

(220 An attempt is made to use the value of a void expression, or an implicit or explicit conversion
{except to weid) is applied to a void expression (6.3.2.2).

564 Portability issues g§l.2

N394 waorking draft — Apnil 1, 2023 ISOVIEC 9899:2023 (E)

(23) Conversion of a pointer to an integer type produces a value outside the range that can be

represented (6.3.2.3).
(24) Conversion between two pointer types produces a result that is incorrectly aligned (6.3.2.3).

(25) A pointer is used to call a function whose type is not compatible with the referenced type
{6.3.2.3).

(26) Anunmatched ' or ¥ character s encountered on a logical source line during tokenization
{6.4).
(27) A reserved keyword token is used in translation phase 7 or 8 for some purpose other than as a

keyword (6.4.1).

(28) A universal character name in an identifier does not designate a character whose encoding
falls into one of the specified ranges (6.4.2.1).

(29) The initial character of an identifier is a universal character name designating a digit (6.4.2.1).

(30) Two identifiers differ only in nonsignificant characters (6.4.2.1).
(31) The identifier _func_ is explicitly declared (h4.2.2).
(32) The program attempts to modify a string literal (6.4.5).

(33) The characters ', %, ", /{, or [+ oceur in the sequence between the < and = delimiters, or the
characters ', \, //, or /# oceur in the sequence between the " delimiters, in a header name
preprocessing token (6.4.7).

(3) A side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object (6.5).

(33) An exceptional condition occurs during the evaluation of an expression (6.5).
(36) An object has its stored value accessed other than by an Ivalue of an allowable type (6.5),

(37) A function is defined with a type that is not compatible with the tvpe (of the expression)
puinted to by the expression that denotes the called function (6.5.2.2).

(38) A member of an atomic structure or union 1s accessed (6.5.2.3).

(39) The operand of the unary + operator has an invalid value (6.5.3.2).

(40) A pointer is converted to other than an integer or pointer type (6.5.4).

(41} The value of the second operand of the / or % operator is zero (5.5.5).

(42) If the quotient a/b is not representable, the behavior of both a/b and a%b {6.5.5).

(43) Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that does not point into, or just beyond, the same array object (6.5.6).

(44) Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that points just beyond the array object and 14 used as the operand of a unary
+ operator that is evaluated (5.5.6).

(45) Pointers that do not point into, or just beyond, the same array object are subtracted (6.5.6).

(46) An array subscript is out of range, even if an object is apparently accessible with the given
subscript (as in the Ivalue expression a[1][7] given the declaration int a[4][5]) (6.5.6).

(47) The result of subtracting two pointers 15 not representable in an object of type ptrdiff-t
{6.5.6).

(48) An expression is shifted by a negative number or by an amount greater than or equal to the
width of the promoted expression (6.5.7).

§J2 Portability issues 583

ISO/MEC 989%:2023 (E) working draft — April 1, 2023 N309%

(49) An expression having signed promoted type is left-shifted and either the value of the expres-
sion is negative or the result of shifting would not be representable in the promoted type

(65.7).

{50) Pointers that do not point to the same aggregate or union (nor just beyond the same array
object) are compared using relational operators (6.5.8).

(51) An object is assigned to an inexactly overlapping object or to an exactly overlapping object
with incompatible type (.3.16.1).

{52) Anexpression that is required to be a an integer constant expression does not have an integer
type; has operands that are not integer constants, named constants, compound literal constants,
enumeration constants, character constants, predefined constants, sizeof expressions whose
results are integer constants, alignof expressions, or immediately-cast floating constants; or
contains casts (outside operands to sizeof and alignef operators) other than conversions of
arithmetic types to integer types (6.6).

{53) A constant expression in an initializer 15 not, or does not evaluate to, one of the following: a
named constant, a compound literal constant, an arithmetic constant expression, a null pointer
constant, an address constant, or an address constant for a complete object type plus or minus
an integer constant expression (6.6).

{(34) An arithmetic constant expression does not have anithmetic type; has operands that are not
integer constants, floating constants, enumeration constants, character constants, predefined
constants, sizeof expressions whose results are integer constants, or alignef expressions; or
containg casts (outside operands to sizeof or alignef operators) other than conversions of
arithmetic types to arithmetic types (6.6).

(55) The value of an object is accessed by an array-subscript [], member-access . or <=, address &,
or indirection * operator or a pointer cast in creating an address constant (6.6).

(56) An identifier for an object 15 declared with no linkage and the type of the object is incomplete
after its declarator, or after its init-declarator if it has an initializer (6.7).

{57) A function is declared at block scope with an explicit storage-class specifier other than extern
{B7.1).

(58) A structure or union 1% defined without any named members (including those specified
indirectly via anonymous structures and unions) (6.7.2.1).

(59) An attempt is made to access, or generate a pointer to just past, a flexible array member of a
structure when the referenced object provides no elements for that array {6.7.2.1).

(60) When the complete type is needed, an incomplete structure or union type is not completed in
the same scope by another declaration of the tag that defines the content {6.7.2.3).

(61) Anattempt is made to modify an object defined with a const-qualified type through use of an
Ivalue with non-const-qualified type (5.7.3).

(62) An attempt is made to refer to an object defined with a volatile-qualified type through use of
an lvalue with non-volatile-qualified type (6.7.3).

(63) The specification of a function type includes any type qualifiers (6.7.3).

(64) Two qualified types that are required to be compatible do not have the identically qualified

version of a compatible type (6.7.3).
(65) An object which has been modified is accessed through a restrict-qualified pointer to a const-

qualified type, or through a restrict-qualified pointer and another pointer that are not both
based on the same object (6.7.3.1).

586 Portability issues £].2

N5 waorking draft — Apnil 1, 2023 ISO/IEC 9899:2023 (E)

(06) A restrict-qualified pointer is assigned a value based on another restricted pointer whose
associated block neither began execution before the block associated with this pointer, nor
ended before the assignment (6.7.3.1).

(67) A function with external linkage 15 declared with an inline function specifier, but is not also
defined in the same translation unit {6.7.4).

(68) A function declared with a _Nereturn function specifier returns to its caller (6.7.4).

(69) The definition of an object has an alignment specifier and another declaration of that object
has a different alignment specifier (6.7.5).

(70) Declarations of an object in different translation units have different alignment specifiers
(6.7.5).

(71) Two pointer types that are required to be compatible are not identically qualified, or are not
pointers to compatible types (5.7.6.1).

{72) The size expression in an array declaration is not a constant expression and evaluates at
P ¥ P
program execution Hime to a nonpositive value (6.7.6.2).

(73) Ina context requiring two array types to be compatible, they do not have compatible element
bypes, or their size specifiers evaluate to unequal values (6.7.6.2).

(74) A declaration of an array parameter includes the keyword static within the [and] and the
corresponding argument does not provide access to the first element of an array with at least

the specified number of elements (6.7.6.3).

(73) A storage-class specifier or type qualifier modifies the keyword vedd as a function parameter
bype list (6.7.6.3).

(78) Ina context requiring two function types to be compatible, they do not have compatible returm
types, or their parameters disagree in use of the ellipsis terminator or the number and type of
parameters (after default argument promotion, when there is no parameter type list) (6.7.6.3).

(77) A declaration for which a type s inferred contains a pointer, array, or function declarators

{5.7.9).
(78) A declaration for which a type is inferred confains no or more than one declarators (6.7.5).
{79) The value of an unnamed member of a structure or undon is used (6.7.10).

(80) The initializer for a scalar is neither a single expression nor a single expression enclosed in

braces (6.7.10).

(81) The initializer for an aggregate or union, other than an array initialized by a string literal, is
not a brace-enclosed list of inttializers for its elements or members (6.7.10).

(82) A function definition that does not have the asserted property is called by a function decla-
ration or a function pointer with a type that has the unsequenced or reproducible attribute
(67.127).

(83) An identifier with external linkage is used, but in the program there does not exist exactly
ong external definition for the identifier, or the identifier i not used and there exist multiple
external definitions for the identifier (6.9).

(84) A function that accepts a variable number of arguments is defined without a parameter type
list that ends with the ellipsis notation (6.9.1).

(85) The } that terminates a function is reached, and the value of the function call is used by the
caller (.9.1).

(86) An identifier for an object with internal linkage and an incomplete type is declared with a
tentative definition (6.9.2).

g2 Portability issues 587

ISOJ/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

(87) A non-directive preprocessing directive is executed (6.10).

{88) The token defined is generated during the expansion of a #1f or #elif preprocessing direc-
tive, or the use of the defined unary operator does not match one of the two specified forms
prior to macro replacement (6.10.1).

{89) The #include preprocessing directive that results after expansion does not match one of the
two header name forms (6.102).

{90) The character sequence in an #inelude preprocessing directive does not start with a letter
{6.10.2).

{91) There are sequences of preprocessing tokens within the list of macro arguments that would
otherwise act as preprocessing directives (6.10.4).

{92) The result of the preprocessing operator #1 not a valid character string Literal (6.10.4.2).
(93) The result of the preprocessing operator ## is not a valid preprocessing token (6.10.4.3).

{94) The #line preprocessing directive that results after expansion does not match one of the two
well-defined forms, or its digit sequence specifies zero or a number greater than 2147483647

(6.10.5).

{95) Anon-STDC #pragma preprocessing directive that is documented as causing translation falure
or some other form of undefined behavior is encountered (6.10.7).

(90) A#pragma STOC preprocessing directive does not match one of the well-defined forms (6.10.7).

{97) The name of a predefined macro, or the identifier defined, is the subject of a #define or
#undef preprocessing directive (6.109).

{98) An attempt 15 made to copy an object to an overlapping object by use of a library function,
other than as explicitly allowed (e.g., memmove) (Clause 7).

(99) A file with the same name as one of the standard headers, not provided as part of the implemen-
tation, is placed in any of the standard places that are searched for included source files (7.1.2).

(100} A header is included within an external declaration or definition (7.1.2).

{101) A function, object, type, or macro that is specified as being declared or defined by some
standard header is used before any header that declares or defines it is included (7.1.2).

{102) A standard header is included while a macro 15 defined with the same name as a keyword

(7.1.2).

{103) The program attempts to declare a library function itself, rather than via a standard header,
but the declaration does not have external linkage (7.1.2).

{104) The program declares or defines a reserved identifier, other than as allowed by 7.1.4 (7.1.3).

{105) The program removes the definition of a macro whose name begins with an underscore and
wither an uppercase letter or another underscore (7.1.3).

{106) Anargument to a library function has an invalid value or a type not expected by a function
with a variable number of arguments {7.1.4).

{107) The pointer passed to a library function array parameter does not have a value such that all
address computations and object accesses are valid (7.14).

{108) The macro definition of assert is suppressed to access an actual function (7.2).

{109) The argument to the assert macro does not have a scalar type (7.2).

588 Portability issues £]2

N300 wuorking draft — April 1, 2023 ISO/TEC 9899:2023 (E)

{110y The CX-LIMITED-_RANGE, FENV_ACCESS, or FP_CONTRACT pragma is used in any context other
than outside all external declarations or preceding all explicit declarations and statements
inside a compound statement (7.3.4, 7.6.1, 7.12.2).

(111} The value of an argument to a character handling function is neither equal to the value of EOF
nor representable as an unsigned char (7.4).

(112} A macro definition of errne 1s suppressed to access an actual object, or the program defines
an identifier with the name errna (7.5).

(113) Part of the program tests floating-point status flags, sets floating-point control modes, or
runs under non-default mode settings, but was translated with the state for the FENV_ACCESS
pragma “off” (7.6.1).

(114} The exception-mask argument for one of the functions that provide access to the foating-point
status flags has a nonzero value not obtained by bitwise OR of the floating-point exception
macros {7.6.4).

(115) The fesetexceptflag function is used to set floating-point status flags that were not specified
in the call to the fegetexceptflag function that provided the value of the corresponding
fexcept_t object (7.0.4.5).

(116) The argument to feseteny or feupdateeny is neither an object set by a call to fegeteny or
feholdexcept, nor is it an environment macro (7.6.6.3, 76.6.4).

(117) The value of the result of an integer arithmetic or conversion function cannot be represented

(7821,7822 7825 7824, 72401, 72402, 7241).

(118) The program modifies the string pointed to by the value returned by the setlocale function
(711.1.1).

(119} A pointer returned by the setlocale function is used after a subsequent call to the function,

or after the calling thread has exited (7.11.1.1).

(120) The program modifies the structure pointed to by the value returned by the localecony
function (7.11.2.1).

(121} A macro definition of math-errhandling is suppressed or the program defines an identifier
with the name math_errhandling (7.12).

(122} An argument to a floating-point classification or comparison macro 15 not of real floating type

(7123, 712.17).

(123) A macro definition of setjmp is suppressed to access an actual function, or the program defines
an external identifier with the name setjmp (7.13).

(124} Aninvocation of the setjmp macro occurs other than in an allowed context (7.13.2.1).

(125} The Longjmp function is invoked to restore a nonexistent environment (7.13.2.1).

(126) Aftera Longjmp, there is an attempt to access the value of an object of automatic storage dura-

tion that does not have volatile-qualified type, local to the function containing the invocation
of the corresponding setjmp macro, that was changed between the set jmp invocation and

longjmp call (7.13.2.1).
(127) The program specifies an invalid peinter to a signal handler function (7.14.1.1).

{128) A signal handler returns when the signal corresponded to a computational exception (7.14.1.1).
{129) A signal handler called in response to SIGFPE, SIGILL, SIGSEGY, or any other implementation-

defined value corresponding to a computational excephion returns (7.14.1.1).

{130) A signal occurs as the result of calling the abort or raise funchion, and the signal handler
calls the raise function (7.14.1.1).

§J]2 Portability issues 589

ISOVIEC 9899:2023 (E) working draft — April 1, 2023 N3096

{131) A signal oceurs other than as the result of calling the abort or raise function, and the signal
handler refers to an object with static or thread storage duration that is nota lock-free atomic
object other than by assigning a value to an object declared as volatile sig atomic_t, or
calls any function in the standard library other than the abort function, the -Exit function,
the quick_exit function, the functions in <stdatomic.h= {except where explicitly stated
otherwise) when the atomic arguments are lock-free, the atomic_is_lock_free function with
any atomic argument, or the signal function (for the same signal number) (7.14.1.1).

{132) The value of errne is referred to after a signal occurred other than as the result of calling the
abort or raise function and the corresponding signal handler obtained a SIG-ERR return
from a call to the signal function (7.14.1.1).

{133) Asignal is generated by an asynchronous signal handler (7.14.1.1).
{134) The signal function is used in a multi-threaded program (7.14.1.1).

{135) A function with a variable number of arguments attempts to access its varying arguments
other than through a properly declared and initialized va_list object, or before the va_start
macro is invoked (7.16,7.16.1.1, 7.16.1.4).

{136) The macro va_arg is invoked using the parameter ap that was passed to a function that
invoked the macro va-arg with the same parameter (7.16).

{137) A macro definition of va_start, va_arg, va_copy, or va_end is suppressed to access an actual
function, or the program defines an external identifier with the name va_copy or va_end

(7.16.).

{138) The va_start or va_copy macro is invoked without a corresponding invocation of the va_end
macro in the same funchon, or vice versa (7.16.1,7.16.1.2, 7.16.1.3, 7.16.1.4).

{139) The type parameter to the va-arg macro is not such that a pointer to an object of that type can
be obtained simply by postfixing a + (7.16.1.1).

{140) The va-arg macro is invoked when there is no actual next argument, or with a specified
type that is not compatible with the promoted type of the actual next argument, with certain
exceptions (7.16.1.1).

{141) Using a null pointer constant in form of an integer expression as an argument foa . . . function
and then interpreting it as a voids or char+ (7.16.1.1).

{142) The va_copy or va_start macro is called to initialize a va_1ist that was previously mitialized

by either macro without an intervening invocation of the va-end macro for the same va-1ist
(7.16.1.2, 7.16.1.4).

{143) The macro definition of a generic function is suppressed to access an actual function (7.17.1,
7.18).

{144) The type parameter of an of fsetof macro defines a new type (7.21).
{145) When program execution reaches an unreachable() macro call (7.21.1).

{146) Arbitrarily copying or changing the bytes of or copying from a non-null pointer into a
aullptr_t object and then reading that object (7.21.2).

{147) The sieniber-designator parameter of an offsetef macro is an invalid nght operand of the .
operator for the fype parameter, or designates a bit-field (7.21).

{148) The argument inan instance of one of the integer-constant macros s not a decimal, octal, o
hexadecimal constant, or it has a value that exceeds the limits for the corresponding type

(7.224).

{149) A byte input/output function is applied to a wide-onented stream, or a wide character
nput/ output function is applied to a byte-oriented stream (7.23.2).

5490 Portability issues £]2

309 waorking draft — April 1, 2023 [SO/IEC 95899:2023 (E)

(150) Use is made of any portion of a file beyond the most recent wide character written to a
wide-oriented stream (7.23.2).

(151) The value of a pointer to a FILE object is used after the associated file is closed (7.23.3).

(152) The stream for the ffLush function points fo an input stream or to an update stream in which
the most recent operation was input (7.23.5.2).

(153) The string pointed to by the mode argument in a call to the fopen function does not exactly
match one of the specified character sequences (7.23.5.3).

(154) An output operation on an update stream is followed by an input operation without an
intervening call to the fflush function or a file positioning function, or an input operation
on an update stream 1 followed by an output operation with an intervening call to a file
pusitioning function (7.23.5.3).

(155) An attempt is made to use the contents of the array that was supplied in a call to the setvbuf
funetion (7.23.5.6).

(156) There are insufficient arguments for the format in a call to one of the formatted input/output

functions, or an argument does not have an appropriate type (7.23.6.1, 723.6.2, 73121,

73122

{157} The format in a call to one of the formatted input/output functions or to the stritime or
wesftime function is not a valid multibyte character sequence that begins and ends in it

initial shift state (7.23.6.1, 7.23.6.2, 72935, 73121, 7.31.22, 7.31L.5.1).

(158) In a call to one of the formatted output functions, a precision appears with a conversion

specifier other than those deseribed (7.236.1, 731.21).

{159} A conversion specification for a formatted output function uses an asterisk to denote an
argument-supplied field width or precision, but the corresponding argument 15 not provided
(F23.61,731.21).

(160} A conversion specification for a formatted output function uses a # or @ flag with a conversion

specifier other than those deseribed (7.23.6.1, 7.31.21).

(161} A conversion specification for one of the formatted input/output functions uses a length

modifier with a conversion specifier other than those described (72361, 72362, 73121,

73122

{162} An s conversion specifier is encountered by one of the formatted output functions, and the
argument is missing the null terminator {unless a precision is specified that does not requine
null termination) (7.23.6.1, 7.31.2.1).

(163} An n conversion specification for one of the formatted input/output functions includes any

flags, an assignment-suppressing character, a field width, or a precision (723.6.1, 7.23.6.2,

73121,731.22).

{164} A % conversion specifier is encountered by one of the formatted input,/ output functions, but
the complete conversion specification 15 not exactly %% (7.23.6.1, 7.23.62, 731.2.1,7.31.2.2).

(165} An invalid conversion specification s found in the format for one of the formatted input/out-

put functions, or the strftime or wesftime function (7.23.6.1, 72562, 72935, 73121,

73122, 73151).

(106) The number of characters or wide characters transmitted by a formatted output function {or
written to an array, or that would have been written to an array) is greater than INT_MAX
(F23.61,731.21).

(167) The number of input items assigned by a formatted input function is greater than INT-MAX
(723.02,7.31.22).

]2 Portability issues 5491

[SO/IEC 9899:2023 (E) working draft — April 1, 2023 N96

(108) The result of a conversion by one of the formatted input functions cannot be represented in
the corresponding object, or the receiving object does not have an appropriate tvpe (7.23.6.2,
7.31.22)

{169} Ac, s, or [conversion specifier i encountered by one of the formatted input functions, and
the array pointed to by the corresponding argument is not large enough to accept the input
sequence (and a null terminator if the conversion specifier is s or [) (7.23.6.2, 7.31.2.2).

{170} A c, 5, or [conversion specifier with an 1 qualifier is encountered by one of the formatted
input functions, but the input is not a valid multibyte character sequence that begins in the
initial shift state (7.23.6.2, 7.31.2.2).

(171) The input itemn for a %p conversion by one of the formatted input functions is not a value
converted earlier during the same program execution (7.23.6.2, 7.31.2.2).

(172) The wfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, vsscanf, vfwprintf,
vfuscanf, vswprintf, vswscanf, waprintf, or vwseanf function is called with an improperly
initialized va_list argument, or the argument is used (other than in an invecation of va_end)
after the function returns (7.23.6.8, 7.23.6.9, 7236.10,7.23.6.11, 723.6.12, 723.6.13, 723614,
7312573106, 7.31.27,7.31.28,7.31.29, 7.31.2.10).

(173) The contents of the array supplied in a call to the fgets or fgetws function are used aftera
read error oceurred (7.237.2,7.31.3.2).

(174) The file position indicator for a binary stream is used after a call to the ungete function where
its value was zero before the call (7.23.7.10).

(175) The file position indicator for a stream is used after an error occurred during a call to the

fread or furite funchon (7.23.8.1, 723.82).
{176) A partial element read by a call to the fread function is used (7.23.81).

(177) The fseek function is called for a text stream with a nonzero offset and either the offset was
not returned by a previous successful call to the ftell function on a stream associated with

the same file or whence is not SEEK-SET (7.23.9.2).

(178) The fsetpos function is called to set a position that was not returned by a previous successful
call to the fgetpes function on a stream associated with the same file (7.23.9.3).

(179) A non=null pointer returned by a call to the calloc, malloc, realloc, or aligned_alloc
function with a zero requested size 15 used to access an object (7.24.3),

{180} The value of a pointer that refers to space deallocated by a call to the free or realloc function
15 used (7.24.3).

(181) The pointer argument to the free or realloc function does not match a pointer earlier
returned by a memory management function, or the space has been deallocated by a call to

freeor realloc (7.243.3, 7.2437).
(182) The value of the object allocated by the mallec function is used (7.24.3.6).

(183) The values of any bytes in a new object allocated by the realloc function beyond the size of
the old object are used (7.24.3.7).

{184} The program calls the exit or quick-exit function more than once, or calls both functions
(72444, 72447,

(185) During the call to a function registered with the atexit or at-quick-exit function, a call is
made to the Longjmp function that would terminate the call to the registered function (7.24.4.4,
7.2447).

(186) The string set up by the getenv or strerror function is modified by the program (7.24.4.6,
7.26.6.3).

592 Portability issues £1.2

309 waorking draft — April 1, 2023 ISO/EC 9599:2023 (E)

(187) A signal is raised while the quick-exit function is executing (7. 24.4.7).

(188) A command i% executed through the system function in a way that is documented as causing
termination or some other form of undefined behavior (7.24.4.8).

(189) A searching or sorting utility function 14 called with an invalid pointer argument, even if the
number of elements 1s zero {7.24.5).

(180} The comparison function called by a searching or sorting utility function alters the contents of
the array being searched or sorted, or returns ordering values inconsistently (7.24.5).

(181) The array being searched by the bsearch function does not have its elements in proper order
{7.245.1).

{192} The current conversion state is used by a multibyte/wide character conversion function after
changing the LC_CTYPE category (7.24.7).

{193} A string or wide string utility function is instructed to access an array bevond the end of an

object (7.20.1, 7.31.4).

(194) A string or wide string ubility function is called with an invalid pointer argument, even if the

length is zero (7.26.1, 7.31.4).

(195) The contents of the destination array are used after a call to the strafrm, strftine, wesxfrm,
or wesftime function in which the specified length was too small to hold the entire null-
terminated result (7.26.45,7.2935,731.444,7315.1).

{196} A sequence of calls of the strtok function is made from different threads (7.26.5.9).

(187) The first argument in the very first call to the strtok or westok is a null pointer (7.26.5.9,
7.3146.7).

(198) A pointer returned by the strerror function is used after a subsequent call to the function, or
after the calling thread has exited (7.26.6.3).

{199} The type of an argument to a type-generic macro i not compatible with the type of the
corresponding parameter of the selected function (7.27).

(200} Arguments for generic parameters of a type-generic macro are such that some argument has a
corresponding real type that is of standard floating type and another argument is of decimal

floating type (7.27).

{201} Arguments for generic parameters of a type-generic macro are such that neither <math . h= and
<cofples. hx define a function whose generic parameters have the determined corresponding

real type (7.27).

(202) A complex argument 15 supplied for a generic parameter of a type-generic macro that has no
corresponding complex function (7.27).

(203) A decimal floating argument is supplied for a generic parameter of a type-generic macro that
expects a complex argument (7.27).

(204) A standard floating or complex argument is supplied for a generic parameter of a type-generic
macto that expects a decimal floating type argument (7.27).

(205} A non-recursive mutex passed to mta_lock is locked by the calling thread (7.28.4.3).

(206) The mutex passed to mtx_timedlock does not support imeout (7.28.4.4).

(207) The mutex passed to mtx-unlock 15 not locked by the calling thread (7.26.4.6).

(208) The thread passed to thrd-detach or thrd-joein was previously detached or joined with
another thread (7.28.5.3, 725.5.6).

]2 Portability issues 593

1

ISOVIEC 95899:2023 (E) working draft — April 1, 2023 M3096

(209 The tss_create function 15 called from within a destructor (7.28.6.1).

{210} The key passed to tss_delete, tss_get, or tss_set was not returned by a call to tss_create
before the thread commenced executing destructors (726862, 728.6.35, 7.28.6.4).

(211} An attempt is made to access the pointer returned by the Hme conversion functions after the
thread that originally called the function to obtain it has exited (7.29.3).

(212} At least one member of the broken-down time passed to asctime contains a value outside its
normal range, or the calculated year exceeds four digits or is less than the year 1000 (7 29.3.1).

(213} The argument corresponding to an s specifier without an 1 gualifier in a call to the fwprintf
function does not point to a valid multibyte character sequence that begins in the initial shift

stabe (7.31.2.11).

(214} Ina call to the westok funchon, the object pointed to by ptr does not have the value stored by
the previous call for the same wide string (7.31.4.6.7).

(215} An mbstate_t object is used inappropriately (7.31.6).

{218) The value of an argument of tvpe Wwint_t to a wide character classification or case mapping
function is neither equal to the value of WEOF nor representable as a wehar-t (7.32.1).

{217) The iswetype funchion is called using a different LCZCTYPE category from the one in effect for
the call to the wetype function that returned the description (7.32.2.2.1).

(218) The towctrans function is called using a different LC_CTYPE category from the one in effect
for the call to the wetrans function that returned the description (7.32.3.2.1).

J.3 Implementation-defined behavior

A conforming implementation is required to document its choice of behavior in each of the areas
listed in this subclause. The following are implementation-defined:

J.3.1 Translation
(1) How a diagnostic is identified (3.10, 5.1.1.3).
(2} Whether each nonempty sequence of white-space characters other than new-line s retained or

replaced by one space character in translation phase 3 (3.1.1.2).

].3.2 Environment

(1) The mapping between physical source file multibyte characters and the source character set in
translation phase 1 (5.1.1.2).

(2} The name and type of the function called at program startup in a freestanding environment

{(5.1.2.1).
(3) The effect of program termination in a freestanding environment (5.1.2.1).
(4) An alternative manner in which the main function may be defined (5.1.2.2.1).
(5) The values given to the strings pointed to by the argy argument to main (5.1.2.2.1).
(6) What constitutes an interachve device (5.1.2.3).

(7} Whether a program can have more than one thread of execution in a freestanding environment

(5.1.2.4).

(8) The set of signals, their semantics, and their default handling (7.14).

(9} Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational
exception (7.14.1.1).

544 Portability issues =

C23 pp584-594: 218 types of undefined behavior

