
Portability

1

Application binary interfaces (ABI)

2

most Windows laptops, Linux laptops and pre-M1 Macs share the same ISA: x86_64

iPhones, Android phones, M1 to M4 Macs share the same ISA: AArch64

Q: Why, then, do applications need to be recompiled separately for each platform?
e.g. iPhone vs. Android phone

A: Because platforms have different OSs and ABIs.

3

What is an ABI?

An application binary interfaces (ABI) defines:

file format for

object files

dynamically-linked files (shared objects / dll)

and executable files

convention for function calls

convention for system calls

It is called binary because it is independent of the language in which applications are written
(i.e. it is related to the machine code, not to the source code)

4

ABI: function calls (x86_64)

#include <stdio.h>

int main()
{

puts("Hello\n");
return 0;

}

clang / Linux / x86_64 MSVC / Windows / x86_64

main:
push rax
lea rdi, [rip + .L.str]
call puts@PLT
xor eax, eax
pop rcx
ret

.L.str:
.asciz "Hello\n"

_DATA SEGMENT
$SG9391 DB 'Hello', 0aH, 00H
_DATA ENDS

main PROC
$LN3:

sub rsp, 40
lea rcx, OFFSET FLAT:$SG9391
call puts
xor eax, eax
add rsp, 40
ret 0

main ENDP

5

ABI: function calls (AArch64)

clang / MacOS / AArch64 MSVC / Windows / AArch64

#include <stdio.h>

int main()
{

puts("Hello\n");
return 0;

}

main:
stp x29, x30, [sp, #-16]!
mov x29, sp
adrp x0, .L.str
add x0, x0, :lo12:.L.str
bl puts
mov w0, wzr
ldp x29, x30, [sp], #16
ret

.L.str:
.asciz "Hello\n"

IMPORT |puts|

|main| PROC
|$LN3|

stp fp,lr,[sp,#-0x10]!
mov fp,sp
adrp x8,|$SG4901|
add x0,x8,|$SG4901|
bl puts
mov w0,#0
ldp fp,lr,[sp],#0x10
ret

ENDP

6

Try it for yourself:
godbolt.org

7

https://godbolt.org/z/jfM964716

Calling convention

int function(int a1, int a2, int a3, int a4, int a5, int a6, int a7)
{

return a1;
}

platform a1 a2 a3 a4 a5 a6 a7 a8 … return value

AArch64 x0 x1 x2 x3 x4 x5 x6 x7 (stack) x0

“SysV” x86_64 rdi rsi rdx rcx r8d r9d (stack) (stack) (stack) rax

Windows x86_64 rcx rdx r8d r9d (stack) (stack) (stack) (stack) (stack) rax

Note: floating-point parameters are passed separately

8

Some specifications

SysV x86_64 ABI: ,

AArch64 ABI:

Linux-specific stuff:

repo pdf

repo

documents

Remarks:

OS vendors may or may not adhere to the ABI spec of the hardware:

Microso� Windows does their own thing on x86_64

MacOS follows AArch64 calling convention,

but uses Mach-O (not ELF) as an object file format

Some part of the ABI may be defined by OS vendors

(e.g. system call convention)

The ABI is language-independent,

but the C language (sometimes C++ as well) has a special status

The ABI is defined in terms of C function calls and C datastructures.
9

https://gitlab.com/x86-psABIs/
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build
https://github.com/ARM-software/abi-aa/releases
https://refspecs.linuxfoundation.org/

Portable code

10

How do we ship code that work across all platforms?

11

Option 1: interpreters

use interpreted languages, ship source

Python, Javascript, …

languages that compile to virtual machine code

ship VM code

optionally, ship VM interpreter

Java, C#

12

Option 2: multiple compilations

compile one executable on each platform

in some cases, cross-compilation is possible

MacOS iOS

Linux Android

→
→

13

What if we cannot (or do not want to) recompile?

14

Option 3: Translation

Use case: same OS, different ISA

Translation is a form of compilation

From machine code

To machine code (of a different ISA)

Example: Apple Rosetta 2 translates x86_64 into AArch64

15

Option 4: Compatibility layers

Use case: different OSs, same ISA

add OS support for a foreign ABI

foreign file formats (for objects, DLLs and executables)

foreign convention for system calls

add libraries for foreign ABI

foreign convention for function calls

Examples:

Wine allows running Windows apps on Linux.

WSLv1 allows running Linux apps on Windows.

16

Option 5: emulation

an emulator is an interpreter for machine code (e.g. QEmu)

much slower than running the code

JIT can mitigate slowness, to some extent

typically, a full-blown operating system runs inside the interpreter!

17

18

19

20

Option 6: virtualization

virtualization is essentially hardware-assisted emulation

(e.g. Xen, KVM, VirtualBox, VMWare, Apple Parallels, WSLv2)

virtualized so�ware must target the same ISA as hardware

like emulation, runs a full-blown operating system

21

Example: Apple Parallels

22

Host OS

23

Guest OS

24

Definitions

The hypervisor is the so�ware that manages the guest OS.

It can be the host OS itself (“Type 1”: Xen, KVM)

It can be a process within the host OS (“Type 2”: Apple Parallels)

25

Virtualization mainly deals with security:

Let guest OSs believe they have direct access to hardware…

… but every hardware access is tightly controlled by the hypervisor

Virtualization is the main technology enabling “cloud computing”.

Amazon Web Services runs Xen

Google Cloud Platform runs KVM

Customers rent a virtual machine in a datacenter

They can connect (remotely) to this machine

It runs their (guest) OS of choice

It acts as if it was physical hardware

26

Option 7: containers

Use case: Same ISA, same kernel, different OS.

Containers are a lightweight form of virtualization.

The host’s kernel also acts as a kernel for the guest.

Mainly: filesystems, libraries and applications are separated.

Examples:

A Debian Linux guest on a Fedora Linux host

A Debian 11 Linux guest on a Debian 12 host

A Debian 12 guest with specific libraries installed, on a Debian 12 host

27

Application programming interfaces (API)

28

Definition

An API defines how a library (or any other service) is to be used.

29

Library API

FILE *fopen(const char *path, const char *mode);

open(file, mode='r', buffering=- 1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

30

Web API

Example:

GET https://www.google.com/search?q=<query>

google-chrome https://www.google.com/search?q=Software%20Engineering

31

Example:

GET https://cloudflare.com/cdn-cgi/trace

curl -4s "https://cloudflare.com/cdn-cgi/trace"

32

Example:

PUT https://api.cloudflare.com/client/v4/zones/{zone_identifier}/dns_records/{identifier}

curl --request PUT \
--url https://api.cloudflare.com/client/v4/zones/zone_identifier/dns_records/identifier \
--header 'Content-Type: application/json' \
--header 'X-Auth-Email: ' \
--data '{
"content": "198.51.100.4",
"name": "example.com",
"proxied": false,
"type": "A",
"comment": "Domain verification record",
"tags": [
"owner:dns-team"

],
"ttl": 3600

}'

33

APIs and portability

many APIs are cross-platform

C standard library

Almost all Python modules

Qt, Electron, Flutter, … (frameworks for GUI applications)

WEB APIs only depend on an internet connection

some are specific to a platform

Windows UI Library, MacOS Cocoa

34

Dependencies

35

your code requires libA version >= 1.1, lib B version >= 4.5

lib B version 4.5 requires libX version 2.0 and libA version 0.8

lib B version 4.7 requires libX version 2.0 and libA version 1.1

lib B version 4.6 requires libX version 2.0 and libA version 2.0

lib X version 2.0 requires libA version <= 1.9

How do we install all this?

Which version do we install?

36

Package managers

Package managers solve this problem for you.

They can solve it…

at the OS level:

MacOS:   brew install <package>

Debian/Ubuntu Linux:   apt-get install <package>

Fedora/Suse Linux:   dnf install <package>

at the language level:

Python:   pip install <module>

JavaScript/Node:   npm install <package>

Rust:   cargo install <crate>

37

Limitations

package selection may be limited (packaging is labor-intensive)

security and trust

38

