
So�ware

1

Compilation

2

A compiler:

reads source code,

forms chunks of

data (constants, initial values for global variables)

executable machine code (functions)

associates a symbol to each chunk (variable or function name)

writes all into an “object” (“.o”) file (format: ELF, COFF, Mach-O)

The compiler leaves blank all references to symbols
(incl. external symbols like global variables and global functions)

3

Example:

#include <stdio.h>

int the_number = -1;

int main()
{

scanf("%d", &the_number);
return 0;

}

...
OBJECT GLOBAL DEFAULT the_number
...

0000000000000000 <main>:
0: 48 83 ec 08 sub rsp,0x8
4: be 00 00 00 00 mov esi,0x0
9: bf 00 00 00 00 mov edi,0x0
e: 31 c0 xor eax,eax
10: e8 00 00 00 00 call 15 <main+0x15>
15: 31 c0 xor eax,eax
17: 48 83 c4 08 add rsp,0x8
1b: c3 ret

4

Linking

A linker reads “object” files and writes an executable file.

it assigns a position in memory to every chunk of code and data

it sets the value of the corresponding symbol to this position

it resolves all references to symbols:

replaces all references with the numeric value of the corresponding position in memory

5

Example:

#include <stdio.h>

int the_number = -1;

int main()
{

scanf("%d", &the_number);
return 0;

}

...
54: 000000000040400c 4 OBJECT GLOBAL DEFAULT 24 the_number

...
63: 0000000000401040 28 FUNC GLOBAL DEFAULT 14 main

...
0000000000401040 <main>:
401040: 48 83 ec 08 sub rsp,0x8
401044: be 0c 40 40 00 mov esi,0x40400c
401049: bf 10 20 40 00 mov edi,0x402010
40104e: 31 c0 xor eax,eax
401050: e8 db ff ff ff call 401030 <__isoc99_scanf@plt>
401055: 31 c0 xor eax,eax
401057: 48 83 c4 08 add rsp,0x8
40105b: c3 ret

6

Static and dynamic linking

Static linking is performed in order to prepare an executable (.exe, …) file.

Dynamic linking is performed every time the executable is run

Object files built to be dynamically linked are called

shared objects (.so, Linux, MacOS), or

dynamically-linked libraries (.dll, Windows)

Typically used for

System libraries

Plugins

7

Why a separate linking phase?

Separate linking simplifies compilations

(allows the compiler to write code using functions and variables it has not seen yet)

It allows us to break down our code into multiple files…

that can be compiled separately

It allows using code written and compiled by other people

saves time

lets us use closed-source so�ware

Dynamic linking allows us to use system libraries without shipping them

It reduces the size of executables

It helps in masking some system incompatibilities

(e.g. run the same .exe on Windows 10 and 11)

It allows updating system libraries separately

8

Drawbacks of a separate linking phase

The compiler does not know the code inside external object files

it cannot check for mistakes based on that knowledge

it cannot optimize code based on that knowledge (at least for dynamic linking)

Dynamically-linked libraries add complexity

(separate installation, incompatible versions, etc.)

9

Libraries

Libraries are collections of functions (and data) that can be used by different executables

Examples:

libjpeg: read/write jpeg files

libssl: cryptography

BLAS: fast vector and matrix operations

Qt: cross-platform GUI toolkit

Most languages have a standard library

Distinct from the language itself, but usually necessary in any program

The C language provides no functions.

(All basic utilities (strlen, printf, exit) come from the standard library.)

It is normally dynamically linked
10

Optimizing compilers

int main()
{

int r = 0;

for (int i = 0; i < 1000000; i++)
r = r + 2;

return r;
}

0000000000401020 <main>:
401020: b8 80 84 1e 00 mov eax,0x1e8480 # <-- 2,000,000
401025: c3 ret

11

Note

“Optimal” = “best”

“Optimizing” = “going towards the best possible result”

Do not say: “I made my code more optimal”

Do say: “I optimized my code some more”

or “I made my code better”

12

Operating Systems

13

The operating system (OS) manages the computer and provides services to applications.

Components:

The kernel handles:

most of the boot process (what happens upon power on)

memory allocation and sharing

input/output devices, through “drivers” (o�en dynamically loaded)

application coexistence and cooperation

Optionally:

Standard libraries for some languages (C, C++, .NET, Swi�, …)

Some additional common libraries

User interface (UI): command-line (CLI), graphical (GUI)

Some tools: CLI utilities, compilers, settings/configuration apps

14

Popular OSs:

Windows

MacOS, iOS (base OS: Darwin, kernel: XNU)

Android (kernel: Linux)

Other current OSs:

SteamOS, Debian, Ubuntu, Suse, Fedora, Arch, RHEL, AL2 (base OS: GNU, kernel: Linux)

OpenWrt (base OS: BusyBox, kernel: Linux)

FreeBSD, OPNsense, TrueNAS, pfSense (base OS & kernel: FreeBSD)

OpenBSD

All the above except Windows are descendants from “Unix”

15

On my system:

fopen() is part of the standard library

fopen() calls Unix-specific open(), also in the standard library

open() is a wrapper for the open system call in the Linux kernel

the Linux kernel uses its filesystem and SSD drivers to open the file

it returns a file descriptor (int)

fopen() allocates a structure with buffers and the file descriptor, returns it

FILE *f = fopen("my_file.txt", "r");

open("my_file.txt", O_RDONLY);
mov rdi, 0x402010 # pointer to "my_file.txt"
mov rsi, 0x0 # O_RDONLY == 0
mov rax, 2 # open is syscall #2
syscall

16

Levels of abstraction

the processor only does elementary operations (move 64-bit to/from memory)

the kernel implements basic functionality (managing devices, reading data from a file)

the standard library provides more, OS-independent functionality (buffering, parsing data)

other libraries may allow even more (e.g. decompressing a video file)

17

Virtualized memory

18

Recall this example:

#include <stdio.h>

int the_number = -1;

int main()
{

scanf("%d", &the_number);
return 0;

}

...
54: 000000000040400c 4 OBJECT GLOBAL DEFAULT 24 the_number

...
63: 0000000000401040 28 FUNC GLOBAL DEFAULT 14 main

...
0000000000401040 <main>:
401040: 48 83 ec 08 sub rsp,0x8
401044: be 0c 40 40 00 mov esi,0x40400c
401049: bf 10 20 40 00 mov edi,0x402010
40104e: 31 c0 xor eax,eax
401050: e8 db ff ff ff call 401030 <__isoc99_scanf@plt>
401055: 31 c0 xor eax,eax
401057: 48 83 c4 08 add rsp,0x8
40105b: c3 ret

19

Memory is virtualized

every process sees memory as if it was alone

every time a process accesses memory,

the hardware translates the virtual address into a hardware address

the translation uses a page table managed by the kernel

20

Page table (managed by the kernel):

page virtual address hardware address

#0 0 – 4095 65536 – 69631

#1 4096 – 8191 20480 – 24575

#2 8192 – 12287 4096 – 8191

… … …

x86_64

mov eax, DWORD PTR [4100]

AArch64

ldr w0, [4100]

the processor looks up virtual address 4100 in the page table

it finds page #1, base 4096, plus offset 4

page #1 has hardware address 20480

the memory access is at hardware address 20480 + 4 = 20484

21

Page table

the page table itself is in memory!

at a specific hardware address

various techniques to make page lookup faster (it is a tree, with a cache)

22

Memory allocation

the kernel finds free hardware addresses (unused by any process)

for the virtual addresses:

either the process requests specific virtual addresses

or the kernel finds free virtual addresses (unused by this process)

the kernel adds suitable entries in the page table

the kernel returns the virtual address to the process

23

Virtual memory

Cons:

slow!

memory sharing between processes must be (initially) mediated by the kernel

Pros:

simplifies memory management for the process

enables process isolation (a process cannot snoop on or crash another)

enables fast move for large chunks of memory (just update the page table)

allows fast input/output on devices

(non-memory devices can be mapped to virtual addresses)

allows extending memory:

using storage devices (“swap”)

using compression

using overcommit
24

Stack

25

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

… 16 24 32 40 48 56 64 72 80 …

…

^

f1(): allocate 2 x uint64_t

26

… 16 24 32 40 48 56 64 72 80 …

… a b

^

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

f1(): call f2

27

… 16 24 32 40 48 56 64 72 80 …

… a b R

^

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

f2(): allocate 1 x uint64_t

28

… 16 24 32 40 48 56 64 72 80 …

… a b R c

^

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

f2(): call f3()

29

… 16 24 32 40 48 56 64 72 80 …

… a b R c R

^

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

f3(): return (to f2())

30

… 16 24 32 40 48 56 64 72 80 …

… a b R c

^

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

f2(): return (to f1())

31

… 16 24 32 40 48 56 64 72 80 …

… a b

^

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

f1(): call f3()

32

… 16 24 32 40 48 56 64 72 80 …

… a b R

^

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

f3(): return (to f1())

33

… 16 24 32 40 48 56 64 72 80 …

… a b

^

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

f1(): return

34

… 16 24 32 40 48 56 64 72 80 …

…

^

void f1(void)
{

uint64_t a, b;

f2();
f3();

}

void f2(void)
{

uint64_t c;

f3();
}

int f3(void)
{
}

Back to initial state

35

Stack pointer

x86_64: rsp (by convention – rsp is a general register)

AArch64: sp (mandatorily – sp is a special register)

In both cases, the stack actually grows downwards

Default stack size on Linux: 8 MB

theoretical max recursion depth (best case): 1,000,000

36

Heap

People used to refer to all memory that is not on stack as “the heap”.

Not to be confused with a heap data structure.

The term “the heap” was more relevant when it designated a single contiguous block of

virtual addresses.

Nowadays, OSs offer more flexibility for memory allocation.

37

