
Hardware

1

Levels of abstraction in IC design

2

Levels of abstraction

0. integrated circuit (IC) layout

1. transistors

2. logic gates

3. “intellectual property” (IP) block

3

0. IC layout

Y := A xor B   (IC layout)

4

1. Transistors

Y := A xor B   (transistors)

5

2. Logic gates

A

B
Y

Y := A xor B   (logic gate)

6

3. IP blocks

4-bit equality comparator:

assuming
and

a

b

=
=

A × 2 + A × 2 + A × 2 + A × 23
3

2
2

1
1

0
0

B × 2 + B × 2 + B × 2 + B × 23
3

2
2

1
1

0
0

if a == b then x := 1
if a != b then x := 0

7

3. IP blocks

4-bit equality comparator:

assuming
and

a

b

=
=

A × 2 + A × 2 + A × 2 + A × 23
3

2
2

1
1

0
0

B × 2 + B × 2 + B × 2 + B × 23
3

2
2

1
1

0
0

if a == b then x := 1
if a != b then x := 0

8

Example: -bit addition

carry  

a … 0 1 1 0

b … 0 1 1 1

a + b

n

9

Example: -bit addition

carry   0

a … 0 1 1 0

b … 0 1 1 1

a + b 1

n

10

Example: -bit addition

carry   1 0

a … 0 1 1 0

b … 0 1 1 1

a + b 0 1

n

11

Example: -bit addition

carry   1 1 0

a … 0 1 1 0

b … 0 1 1 1

a + b 1 0 1

n

12

Example: -bit addition

carry   0 1 1 0

a … 0 1 1 0

b … 0 1 1 1

a + b … 1 1 0 1

n

13

Example: -bit addition

carry   0 1 1 0

a … 0 1 1 0

b … 0 1 1 1

a + b … 1 1 0 1

n

14

The 1-bit “full adder”

Input:

1 bit of carry:  

1 bit of a:  

1 bit of b:  

Output:

1 bit of carry:  

1 bit of the sum a + b:  

Operation:   Compute and such that

carry   … 1 1 0

a … 0 1 1 0

b … 0 1 1 1

a + b … 1 1 0 1

C in

A

B

C out

S

C out S

A + B + C in = C out ×2 + S

15

The 1-bit “full adder”

Input:

1 bit of carry:  

1 bit of a:  

1 bit of b:  

Output:

1 bit of carry:  

1 bit of the sum a + b:  

Operation:   Compute and such that

Truth table:

 

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

C in

A

B

C out

S

C out S

A + B + C in = C out ×2 + S

Cin A B C out S

16

The 1-bit “full adder”

Boolean expressions:

 := xor xor

 := (and) or ((xor) and)

Logic diagram:

 

Truth table:

 

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

S A B C in

C out A B A B C in

Cin A B C out S

17

The 1-bit “full adder”

Notes:

Called “full” in contrast to the “1-bit half adder” which has no .

There can be multiple valid Boolean expressions (and logic diagrams)

C in

18

The 1-bit “full adder”

Notes:

Called “full” in contrast to the “1-bit half adder” which has no .

There can be multiple valid Boolean expressions (and logic diagrams)

C in

19

4-bit adder

1-bit

full

adder

1-bit

full

adder

1-bit

full

adder

1-bit

full

adder

20

4-bit adder

4-bit adder

21

How IP blocks are designed

IP blocks are designed (and combined) in hardware description languages (“HDL”):
  Verilog, VHDL and derivatives
HDL is then translated into IC layouts by specialized tools.

SystemVerilog code for an 8-bit adder

interface adder_if();
logic rstn;
logic [7:0] a;
logic [7:0] b;
logic [7:0] out;
logic carry;

endinterface

module adder(adder_if i);
always_comb begin
if (i.rstn) begin
i.out <= 0;
i.carry <= 0;

end else begin
{i.carry, i.out} <= i.a + i.b;

end
end

endmodule

22

The IC design and manufacturing industry

23

Foundries

“foundry” or “fabrication plant” (“fab”):   plant in which ICs are manufactured,

“process node”:   marketing name given by foundries to a particular version of their

manufacturing process  

  

more transistors (per unit of area)

lower power consumption

faster ICs (propagation delay↓, power consumption↓, heat dissipation↓)

and by extension, companies who own such plants (e.g. Intel, TSMC, Samsung).

–   usually a “feature size”: the size of some parts of the

transistors (e.g. 5nm, 7nm, etc.) –   but not directly comparable across companies.

Smaller tansistors means:

24

Types of industry players

fabless:   company that does not own fabrication plants (e.g. ARM, AMD, Apple, nVidia).

Such companies either:

sell the designs of their IP blocks (ARM), or

subcontract foundries to manufacture their designs for them (AMD, Apple, nVidia).

“pure-play” foundries (e.g. TSMC):   foundries who manufacture other companies’ designs.

integrated device manufacturer (IDM) (e.g. Intel):   designs and manufactures its own ICs.

25

Recent history of the industry

In the early 2000s, Intel (US), AMD (US) and IBM (US) have the best manufacturing

technology. All three are IDMs – they design and manufacture in-house.

Around 2008, AMD (US) spun off its foundry (as “GlobalFoundries”) and became fabless.

Note: first iPhone released in 2007 in the US

In the 2010s, TSMC (Taiwan) emerges as a major foundry for Apple (US), nVidia (US) and AMD.

In 2014, IBM sells its manufacturing business to GlobalFoundries.

As of 2024, GlobalFoundries is still one of the largest pure-play foundries

but it has fallen behind in terms of technology (by 5-10 years).

26

State of the industry

Since ~2018, TSMC (Taiwan) has had the best process node, ahead of Samsung (Korea) and

Intel (US).

TSMC’s advantage in large part due to early bet on extreme ultra-violet (“EUV”) technology.

Apple (US), AMD (US), nVidia (US), Qualcomm (US) all mostly subcontract TSMC to fabricate

their top-of-the-line ICs.

Now, Samsung and Intel also use EUV tech.

ASML (Netherlands) is currently the only supplier of EUV-capable machines.

27

Microprocessors

28

Logic gate circuits allow us to compute Boolean functions very fast

limited by propagation delay in copper (nanoseconds per meter) and transistors

(picoseconds)

Boolean functions can model essentially anything we can compute today.

But

we cannot design and manufacture a new IC for each algorithm or computing task

we need many logic gates, even for simple things

~100k transistors for a 64-bit integer division

for context, modern microprocessors have 1-100 billion transistors

 We break down complex algorithms into simple steps.→

29

Components in a microprocessor

Logic gates

A clock

Memory

Input and output devices

30

A simple model

Memory is bits (e.g. for 16 GB,)

At every clock cycle (e.g. 1.2 GHz), we update the memory:

To simplify the model

Some of the memory comes from input devices

Some of the memory is sent to output devices

N x ∈ {0, 1}N N ≃ 128 × 109

x ←i
′ f (x) ∀i =i 0, … ,N

31

Issue with the simple model

In this model, we update the whole memory at every clock cycle:

That would be b/s

 GB/s

As of 2024, memory maxes out at GB/s

128 × 10 ×9 1.2 × 10 =9 153.6 × 1018

≃ 19, 200, 000, 000
∼ 800

Therefore, we cannot have too many different Boolean functions f i

32

A more realistic model

Instead, at each cycle, the computer executes one of a limited set of instructions in a
microprocessor.  Ex.: “Central Processing Unit” (CPU), “Graphics Processing Unit” (GPU).

Instructions are read sequentially from memory and they can be:

a memory read / write (a tiny amount, like 512 bits)

64-bit arithmetic (+, -, ×, /, …)

a comparison (<, >, =, …)

a branch (if, while, …) which alters the control flow of instructions

33

Instruction Set Architectures (ISA)

34

An ISA specifies:

How the machine is organized (memory, etc.)

What instructions are available

How instructions are encoded into bits

Two major ISAs in practice:

x86_64 (aka. x64, x86_64, AMD64): Intel® and AMD® 64-bit CPUs

AArch64 (aka. ARM64): ARM®-based 64-bits CPUs (most phones, Apple M1 – M4)

Many older or less-prominent ISAs:

x86, Itanium, ARMv7, RISC-V, PowerPC, …

35

int f(int a, int b, int c)
{

return (a * b) / c;
}

x86_64:
89 f8 89 d1 0f af c6 99 f7 f9 c3

AArch64:
1b 01 7c 00 1a c2 0c 00 d6 5f 03 c0

f:

 mov eax, edi # 89 f8

 mov ecx, edx # 89 d1

 imul eax, esi # 0f af c6

 cdq # 99

 idiv ecx # f7 f9

 ret # c3

f:

 mul w0, w0, w1 # 1b 01 7c 00

 sdiv w0, w0, w2 # 1a c2 0c 00

 ret # d6 5f 03 c0

 assembly ↑ ↑

36

Assembly

Assembly is the lowest-level programming language

Usually in 1:1 correspondence with binary encoding of instructions

Typically, one line per instruction

37

Instructions (x86_64)

f:

mov eax, edi # 89 f8

mov ecx, edx # 89 d1

imul eax, esi # 0f af c6

cdq # 99

idiv ecx # f7 f9

ret # c3

mov , move

imul , signed integer multiply

idiv signed integer divide eax eax

cdq convert double-word (32 bits) to quad-word (64 bits) sign-extend eax into edx:eax

ret return return to calling function

a b a← b

a b a← a × b

a ← /b

38

Instructions (AArch64)

f:

mul w0, w0, w1 # 1b 01 7c 00

sdiv w0, w0, w2 # 1a c2 0c 00

ret # d6 5f 03 c0

mul , , multiply

sdiv , , signed integer divide

ret return return to calling function

a b c a← b × c

a b c a← b/c

39

Registers

x86_64:

f:

mov eax, edi # 89 f8

mov ecx, edx # 89 d1

imul eax, esi # 0f af c6

cdq # 99

idiv ecx # f7 f9

ret # c3

AArch64:

f:

mul w0, w0, w1 # 1b 01 7c 00

sdiv w0, w0, w2 # 1a c2 0c 00

ret # d6 5f 03 c0

small, fixed set of variables that can be accessed instantly

16 (x86_64) or 31 (AArch64) general-purpose 64-bit registers

plus special registers and flags (not accessible directly)

plus larger registers for extended operations (e.g. non-integer numbers)

40

General-purpose registers (x86_64)

sixteen 64-bit registers:

rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15

we can access the lower 32 bits separately:

eax, ebx, ecx, edx, ebp, esp, esi, edi, r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d

we can access the lower 16 bits separately:

ax, bx, cx, dx, bp, sp, si, di, r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w

we can access the lower 8 bits separately:

al, bl, cl, dl, bpl, spl, sil, dil, r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b

we can access bits 8-15 separately for some registers:

ah, bh, ch, dh

41

Example:

bits 63…56 55…48 47…40 39…32 31…24 23…16 15…8 7…0

64 rax

32 eax

16 ax

8 ah al

42

General-purpose registers (AArch64)

thirty-one 64-bit registers:

x0, …, x30

we can access the lower 32 bits separately:

w0, …, w30

register 31 (x31, w31) is read-only (zero in most cases)

43

Example:

bits 63…56 55…48 47…40 39…32 31…24 23…16 15…8 7…0

64 x0

32 w0

44

Note:

In both cases, registers are treated as integer numbers

We cannot (directly) access individual bits

When it matters, the instruction specifies whether the register is signed or not:

x86_64:

idiv ecx # f7 f9 (signed)

 div ecx # f7 f1 (unsigned)

AArch64:

sdiv w0, w0, w2 # 1a c2 0c 00 (signed)

udiv w0, w0, w2 # 1a c2 08 00 (unsigned)

45

Memory

46

int g(int *a, int *b)
{

return *a + *b;
}

x86_64:

g:

mov eax, DWORD PTR [rsi]

add eax, DWORD PTR [rdi]

 ret

AArch64:

g:

ldr w2, [x0]

ldr w0, [x1]

add w0, w2, w0

ret

47

Memory

From a process’ perspective, memory is seen as a single long array of bytes

(8 bits, treated as a single signed or unsigned integer)

Like registers, memory can be accessed in larger chunks

(e.g. 16, 32 or 64 bits integer)

But the smallest addressable unit is the byte

48

Byte ordering

address 0 1 2 3 … 239 240 241 242 243 244 …

value (hex) ef cd ab 89 … ff a0 a1 a2 a3 42 …

the byte at address 240 is (hex) a0 = (decimal) 160

the byte at address 241 is (hex) a1 = (decimal) 161

the byte at address 242 is (hex) a2 = (decimal) 162

the byte at address 243 is (hex) a3 = (decimal) 163

Q: What is the value of the 32-bit integer at address 240?

A: It depends!

49

Byte ordering / “Endianess”

address 0 1 2 3 … 239 240 241 242 243 244 …

value (hex) ef cd ab 89 … ff a0 a1 a2 a3 42 …

 “big-endian” (BE): 32-bit int at 240 is (hex) a0 a1 a2 a3

 = (decimal)

 = (decimal) 2,694,947,491

“little-endian” (LE): 32-bit int at 240 is (hex) a3 a2 a1 a0

 = (decimal)

 = (decimal) 2,745,344,416

x86_64 is LE

AArch64 is LE by default (LE-only on Windows, MacOS, Linux)

160 × 2 +24 161 × 2 +16 162 × 2 +8 163

163 × 2 +24 162 × 2 +16 161 × 2 +8 160

50

Bit ordering

Because we cannot access individual bits on a CPU (smallest chunk is a byte),
bit ordering does not matter here.

However the same problem crops up in other contexts (USB, Ethernet, Wifi, …)

51

Memory access notation

In assembly, accessing memory is denoted using “[” and “]”

Moving the value 240 into a register:

mov eax, 240 # eax = 240

ldr w0, 240 # w0 = 240

Moving the 4 bytes of memory at address 240 into a register:

mov eax, DWORD PTR [240] # eax = (hex) a3a2a1a0

ldr w0, [240] # w0 = (hex) a3a2a1a0

52

x86_64:

g:

mov eax, DWORD PTR [rsi]

add eax, DWORD PTR [rdi]

 ret

AArch64:

g:

ldr w2, [x0]

ldr w0, [x1]

add w0, w2, w0

ret

int g(int *a, int *b)
{

return *a + *b;
}

53

