
Integer arithmetic

1

Unsigned integers

2

Computers are made out of Boolean gates

But we want to represent numbers other than 0 and 1

How do we proceed?

Consider Booleans as binary digits (bits)

Group them together to form numbers in base 2

3

Base-10 numbers

In base 10 (decimal), we have 10 distinct digits: { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Using one digit, we can count to 9:

0 1 2 3 4 5 6 7 8 9

Then we need more digits:

10 11 12 13 14 15 16 17 18 19

20 21 22 23 ...

If we wanted to count from 0 to 9999 (say, to represent a date), we may decide to use 4 digits:

0000 0001 0002 0003 0004 0005 0006 0007 0008 0009

0010 0011 0012 0013 ...

4

Base-10 numbers

1984 = ?

1 9 8 4

= 1 × 1000 + 9 × 100 + 8 × 10 + 4

= 1 × 103 + 9 × 102 + 8 × 101 + 4 × 100

5

Base-2 numbers

In base 2 (binary), we have 2 distinct digits: { 0, 1 }

Using one digit, we can count to 1:

0 1

Then we need more digits:

10 11 100 101 110 111 1000 1001 ...

If we wanted to count from 0 to 15, we may decide to use 4 digits:

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

6

Base-2 numbers

1001b = ?

1 0 0 1

= 1 × 8 + 0 × 4 + 0 × 2 + 1

= 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20

= 9

Note:

rightmost / least-significant bit is called bit 0

le�most / most-significant bit is called bit n − 1

7

Fixed bit width

For any integer, we must always know how many digits (bits) it has.

Typically, this number of bits is fixed in our code.

bits a.k.a. C type other C type

8 byte† uint8_t unsigned char†

32 uint32_t unsigned int (Windows, Linux, BSD, macOS)

64 uint64_t unsigned long (Linux, BSD, macOS)

unsigned long long (Windows)

† = on almost all contemporary platforms as of 2024

8

Integers in hardware and in programming languages

Most computers† support 8, 16, 32 and 64-bit arithmetic natively (i.e., operations are fast)

Arithmetic can be performed with arbitrary-sized integers by implementing the operations in

so�ware (hence much slower).

In C, every integer type has a specific size.

In C, arbitrary-sized integers are not supported by the language

(they require using specific libraries).

In Python, all integers can have arbitrary sizes

(with a large performance penalty, especially when exceeding 32 bits)

9

bits largest integer (approx.)

8 255

16 65,535

32 4,294,967,295 4 billions

64 18,446,744,073,709,551,615

128 340,282,366,920,938,463,463,374,607,431,768,211,455

= 2 −bits 1

2.1019

3.1038

1 decimal digit = log 10 bits ≃2 3.3219 bits

10

Operations with integers

Essentially the same a schoolbook operations:

0 1 0 1 0 0 1 1

+ 0 1 1 0 0 0 0 1

= 1 0 1 1 0 1 0 0

Just like in school:

addition and subtraction are straightforward

multiplication is more complex

division is much more complex

11

12

Signed integers

13

How do we represent negative numbers?

Impossible with previous approach.

Solution 1:

“sign-magnitude”: sacrifice one bit, which we reserve to store the sign.

Drawback: zero has two representations (+0 and -0)

Drawback: Boolean logic for + and - must handle many cases

Solution 2:

“one’s complement”: reserve top bit for the sign, must be zero for a positive number

when a number is negative, takes its (positive) opposite and flip all bits

Drawback: zero has two representations (+0 and -0)

Drawback: Boolean logic for + and - is simpler but still affected

14

Solution 3 (all current computers†):

“two’s complement”: when a -bit number is negative, represent it the same as the

unsigned number .

n x

2 −n ∣x∣
The top bit is 1 for negative numbers.

Drawback: Flipping sign slightly more complex (flip all bits then add one).

Advantage: zero has a single representation

Advantage: Boolean logic for + and - is the same as for unsigned integers

15

Two’s complement

Given a single -bit pattern,

let be its unsigned value

let be its signed value,

If bit 0, then:

If bit 1, then:

n

u

s

(n − 1) =
s :=u

(n − 1) =
s :=u− 2n

4-bit example:

bit pattern 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

unsigned 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

signed 0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

u

s

16

bit 0

bit 1

(n − 1) = ⇒ s=u

(n − 1) = ⇒ s=u− 2n

In general:

bit pattern 00 … 0 01 … 1 10 … 0 11 … 1

unsigned 0

signed 0

u … (2) −n−1 1 (2)n−1 … (2) −n 1

s … (2) −n−1 1 −(2)n−1 … −1

Unsigned: u∈ {0, … , (2) −n 1}
Signed: s ∈ {−(2), … , −1, 0, … (2) −n−1 n−1 1}

17

 bits (min) (max)

8 -128 127

16 -32768 32767

32 -2,147,483,648 2,147,483,647

64

128

n −2bits−1 2 −bits−1 1

≃ −9.1018 ≃ 9.1018

≃ −2.1038 ≃ 2.1038

18

Conversely:

if

represent with bit pattern of .

if

represent with bit pattern of .

if

cannot represent, need larger

s≥ 0 s ∈ {0, … , (2) −n 1}
u= s

s< 0 s ∈ {−(2), … , (2) −n−1 n−1 1}
u= 2 −n ∣s∣

s∈ {−(2), … , (2) −n−1 n−1 1}
n

19

Sign extension

Let us represent in -bit signed binary (two’s complement):s = −5 n

 u= 2 −n ∣ s ∣ = 2 −n 5

bit pattern

4 -5 11 1011

5 -5 27 11011

6 -5 59 111011

7 -5 123 1111011

8 -5 251 11111011

9 -5 507 111111011

10 -5 1019 1111111011

11 -5 2043 11111111011

12 -5 4091 111111111011

n s u

20

Increasing the number of bits

To convert an -bit number to an -bit number ():

Unsigned:

Additional high-order (le�most) bits are set to zero

Signed (“sign extension”):

Additional high-order (le�most) bits are set to the value of bit

n (n + k) k ≥ 0

(n − 1)

21

Overflow

22

Q: What happens if we run this?

unsigned char a = 255;
unsigned char b = 1;
unsigned char x = a + b;

unsigned char a = 1;
unsigned char b = 2;
unsigned char x = a - b;

signed char a = 127;
signed char b = 1;
signed char x = a + b;

signed char a = -128;
signed char b = 1;
signed char x = a - b;

A: It’s complicated!

We will dedicate an entire chapter to this.

23

Base 16

24

Hexadecimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
binary hexadecimal decimal

0000 0000 00 0

0000 0001 01 1

0000 0010 02 2

0000 0011 03 3

0000 0100 04 4

0000 0101 05 5

0000 0110 06 6

0000 0111 07 7

0000 0000 08 8

0000 1001 09 9

0000 1010 0a 10

0000 1011 0b 11

0000 1100 0c 12

0000 1101 0d 13

0000 1110 0e 14

0000 1111 0f 15

binary hexadecimal decimal

0001 0000 10 16

0001 0001 11 17

0001 0010 12 18

0001 0011 13 19

0001 0100 14 20

0001 0101 15 21

0001 0110 16 22

0001 0111 17 23

0001 0000 18 24

0001 1001 19 25

0001 1010 1a 26

0001 1011 1b 27

0001 1100 1c 28

0001 1101 1d 29

0001 1110 1e 30

0001 1111 1f 31

binary hexadecimal decimal

0010 0000 20 32

0010 0001 21 33

0010 0010 22 34

0010 0011 23 35

0010 0100 24 36

0010 0101 25 37

0010 0110 26 38

0010 0111 27 39

0010 0000 28 40

0010 1001 29 41

0010 1010 2a 42

0010 1011 2b 43

0010 1100 2c 44

0010 1101 2d 45

0010 1110 2e 46

0010 1111 2f 47

25

Pros:

Directly maps to binary numbers:

hex 12f3 = binary 0001 0010 1111 0011

More compact than binary

Directly maps to bytes:

two hex digits = one byte

Cons:

Not human-friendly (esp. for arithmetic)

26

Characters and text

27

Q: How do we map bit patterns to characters in order to form text?

Many standards

Some similaritites

Some incompatibilities

28

ASCII (1963-)

American Standard Code for Information Interchange

Each character stored stored in 1 byte (8 bits, 256 possible characters)

128 standardized characters

Many derivatives specify the remaining 128

| 2nd hex digit
| 0 1 2 3 4 5 6 7 8 9 a b c d e f

----|--
0 | \t \n \r
1 |
2 | ! " # $ % & ' () * + , - . /
3 | 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

1st hex digit: 4 | @ A B C D E F G H I J K L M N O
5 | P Q R S T U V W X Y Z [\] ^ _
6 | ` a b c d e f g h i j k l m n o
7 | p q r s t u v w x y z { | } ~

29

Unicode (1988-)

Associates “code points” (roughly, characters) to integers

Up to 1,112,064 code points (currently 149,813 assigned)

First 128 code points coincide with ASCII

Multiple possible encodings into bytes (“transmission formats”):

UTF-8

First 128 code points encoded into a single byte (backward compatible with ASCII)

Sets most significant bit (bit 7) to 1 to signify “more bytes needed”

Up to 4 bytes per code point

Default on BSD, iOS/MacOS, Android/Linux and for most internet communications

UTF-16

Code points are encoded by either two or four bytes

Default on Windows, for Java code, and for SMS

30

Unicode (1988-)

Aims at encoding all languages:

including extinct ones

le�-to-right, right-to-le� or vertical

and more (emojis 🤷)

Some “characters” require multiple code points (flag emojis, skin tone modifiers)

What is even a “character”? (code point, glpyh, grapheme, cluster)

Unicode is extremely complicated

Latest version specification (v15.1.0, 2023-09-12) is 1,060 pages

31

https://www.unicode.org/versions/Unicode15.0.0/UnicodeStandard-15.0.pdf

