
20875 Software Engineering

Tutorial 4

First git project

1. If not already done, configure the name and email to be used in your commits. Configure your

preferred editor to be used by git as well.

2. Create a directory called “test project”.

3. Inside the directory “test project”, create a git repository.

4. Add a file called “main.c” containing:

#include <stdio.h>

int main()

{

printf("Hello, world!\n");

return 0;

}

and a “Makefile” (make sure to use TAB characters for indentation):

main: main.o

clang -Wall -O3 -o $(@) $(^)

main.o: main.c

clang -Wall -O3 -c -o $(@) $(<)

5. Build the executable “main”. Create a “.gitignore” file that ignores that executable and any file

ending in “.o”.

6. Stage the source files (“main.c”, “Makefile”, “.gitignore”) for a commit. Check your staged

area with “git status”.

7. Create the first commit for “test project”.

Second git project

You and the rest of your team (Alice, Bob, Carol, Dan, Eve) decide to write an interpreter for a little

language aimed at describing Boolean formulas and printing their truth tables.

1. Alice creates a git repository, then writes a tokenizer and a parser for the language. Subsequently,

Alice, leaves the project. Clone Alice’s repository https://www.poirrier.ca/git/alice.git and

read her code.

1

https://www.poirrier.ca/courses/softeng/hw01/hw01.pdf
https://www.poirrier.ca/git/alice.git


2. Bob emails you. On top of Alice’s parser, he implemented the eval() and run() methods, which

allow us to print the appropriate truth tables. For the input file ag24 15.txt, Bob’s code takes more

than 4 hours. He asks you to fetch the commit a97f91 in his repository https://www.poirrier.

ca/git/bob.git. Review the code introduced by Bob.

3. After some discussion with Carol and Dan, the team concludes that Bob’s code could be made

faster by using short-circuit evaluation for the operators and and or. Carol and Dan each set out

to propose their own implementation of short-circuit evaluation. Carol finishes first. She created

a branch carol branch for her code. She reports that ag24 15.txt now takes 46 seconds. Fetch

carol branch from her repository https://www.poirrier.ca/git/carol.git into a local branch.

For simplicity, we will call this local branch carol branch as well. Switch to it, review Carol’s code.

Then, merge that code into your main branch.

4. You realize that there is a small problem with the code’s output. Bob decided to print a header

above tables for clarity, but forgot that this header must be preceded by a “#” sign in order to

conform to the output specification. Fix the issue, then create a commit for this code change, still

on the main branch.

5. Eve achieved massive performance improvement on top of Carol’s code. First, she implemented con-

stant propagation (e.g., changing (x and True) into (x), or changing (x or True) into (True)).

Then, she implemented probing. The idea of probing is to first arbitrarily fix the value of a vari-

able (e.g., y = True), then perform constant propagation. If an expression becomes the constant

False, then we know that we cannot have y = True in a True row of the truth table for that

expression. Therefore, we can fix y = False for any show ones for that expression. With this im-

provement, ag24 15.txt now runs in 0.135 second. Fetch Eve’s code on her branch carol branch

at https://www.poirrier.ca/git/eve.git. Review Eve’s contribution. Rebase it on top of your

commit on the main branch, then merge it.

6. Dan finally implemented his approach to short-circuit evaluation. Contrary to Carol’s use of any()

and all() with generator expressions, Dan simply used a loop. Because of how CPython is im-

plemented, his implementation is faster: 30 seconds compared to Carol’s 45 seconds. Fetch Dan’s

dan branch at https://www.poirrier.ca/git/dan.git. Merge it onto the main branch, com-

bining Dan’s short-circuit code with Eve’s probing and your bugfix. Resolve any conflicts that

result.

2

https://www.poirrier.ca/git/bob.git
https://www.poirrier.ca/git/bob.git
https://www.poirrier.ca/git/carol.git
https://www.poirrier.ca/git/eve.git
https://www.poirrier.ca/git/dan.git

