LECTURE 21

ASSOCIATIVE ARRAYS

Associative arrays

e also known as maps or dictionaries
e are collections of (key, value) tuples, where
» key could be any string of bits (integer, character string, other data)
= valueis any data
e that support
» insertion (add a (key, value) tuple)
» deletion (remove a (key, value) tuple)
= lookup given a key,

o find the corresponding value,

o or determine that no such key has been added

(ko,
(k1,
(k2,
(k3,
(k4,
(k5,

vQ)
vl)
v2)
v3)
v4)
v5)

Naive implementation

Just some list of (key, value) tuples:

Insertion Deletion (after lookup) Lookup
Linked list O(1) O(1) O(n)
Dynamic array O(1) O(n) O(n)

ASSOCIATIVE ARRAYS:

IMPLEMENTATIONS USING
A TOTAL ORDER ON KEYS

Total order on keys

We assume that we can compare keys (i.e. evaluate key_i < key_jforanyi, j)
Always possible in practice (reinterpret key bits as a big integer)
Sometimes, a specialized < operator makes sense (e.g. constant-size keys)

key space may be infinite (arbitrary-sized keys)

Sorted dynamic array of (key, value) tuples

e Assume key® < keyl < ... < keyn.

e Use bisection for key lookup

Insertion Deletion (after lookup) Lookup
Linked list O(1) O(1) O(n)
Dynamic array O(1) O(n) O(n)
Sorted dynamic array O(n) O(n) O(log(n))

Binary search tree

e |nvariant: For any given node i,

» key_j < key_i forevery descendant node j in the left subtree of i

= key_j > key_i forevery descendant node j in the right subtree of i

e Main concern: depending on insertion order, we may get

8 1

good or bad

10

12

Self-balancing binary search tree

o AVL trees
e Red-black trees

e B-trees, splay trees, treaps, ...

Insertion Deletion (after lookup) Lookup
Linked list O(1 O(1) O(n)
Dynamic array O(O(n) O(n)
Sorted dynamic array O(n O(n) O(log(n))
Binary search tree O(n O(n) O((n))
AVL tree O(log(n O(log(n)) O(log(n))
Red-black tree O(log(n O(log(n)) O(log(n))

Self-balancing binary search tree

e Cache behavior: ok, not great
(similiar to other binary tree structures, e.g. heap)

8

ASSOCIATIVE ARRAYS:

IMPLEMENTATIONS USING
KEYS BITS

TRIES

Trie

A trie (or prefix tree) is a tree of static arrays of size 21
Key bits are divided into chunks of " bits: “letters”
Each 1'-bits letter gives an index for one node’s static arrays

Letters form a path in the tree (from root to leaf)

T =4
Insert (@0x9f2, V1)

->

letters 2, f, 9

T =4
Insert (@0x9f2, V1)

->

letters 2, f, 9

123456789 abcdeff

T =4
Insert (@0x9f2, V1) -> Jetters 2, f, 9

12345678 9%9abcdef
/
/
123456789 abcdefef

T =4
Insert (@0x9f2, V1) -> Jetters 2, f, 9

12345678 9%9abcdef
/
/
123456789 abcdef f
\
\
\
\
1 23456789%9abcdef

T =4
Insert (@0x9f2, V1) -> Jetters 2, f, 9

12345678 9%9abcdef
/
/
123456789 abcdef f
\
\
\
\
123456789 abcdef

|
V1

T =4
Insert (@x9f2, V1) -> Jletters 2, f, 9
Insert (@xc8d, V2) -> Jetters d, 8, c

12345678 9%9abcdef
/
/
123456789 abcdef f
\
\
\
\
123456789 abcdef

|
V1

T =4
Insert (@x9f2, V1) -> Jletters 2, f, 9
Insert (@xc8d, V2) -> Jetters d, 8, c

123456789 abcdef f

/ \
/
123456789 abcdef f
\
\
\
\
123456789 abcdef

|
V1

\

©123456789abcdef

T =4
Insert (@x9f2, V1) -> Jletters 2, f, 9
Insert (@xc8d, V2) -> Jetters d, 8, c

123456789 abcdef f

/ \
/
123456789 abcdef f
\
\
\
\
123456789 abcdef

|
V1

\

123456789abcdef
\
\
\
\
123456789 abcdef f

T =4
Insert (@x9f2, V1) -> Jletters 2, f, 9
Insert (@xc8d, V2) -> Jetters d, 8, c

123456789 abcdef f

/ \
/
123456789 abcdef f
\
\
\
\
123456789 abcdef

|
V1

\

123456789abcdef
\
\
\
\
123456789 abcdef

|
V2

T =4

Insert (@x9f2, V1) -> Jletters 2, f, 9
Insert (@xc8d, V2) -> Jetters d, 8, c
Insert (@x532, V3) -> Jetters 2, 3, 5
12345678 9%9abcdefef
/ \
/ \
123456789 abcdef f 12345678 9abcdefef
\ \
\ \
\ \
\ \
123456789 abcdef 1 23456789%9abcdef

| |
V1 V2

T =4

Insert (@x9f2, V1) -> Jletters 2, f, 9
Insert (@xc8d, V2) -> Jetters d, 8, c
Insert (@x532, V3) -> Jetters 2, 3, 5
123456789 abcdefef
/ \
/ \
123456789 abcdef f 12345678 9abcdefef
\ \
\ \
\ \
\ \
123456789 abcdef 1 23456789%9abcdef

| |
V1 V2

T =4

Insert (@0x9f2, V1) -> Jetters 2, T,
Insert (@xc8d, V2) -> Jetters d, 8,
Insert (@0x532, V3) -> Jetters 2, 3,

o1 nNn O

123456789 abcdeff

/ \
/
123456789abcdeff
/ \
/ \
/ \
/ \
123456789 abcdef f 123456789 abcdef
|
V1

\

1 23456789abcdef
\
\
\
\
123456789 abcdef

|
V2

T =4

Insert (@0x9f2, V1) -> Jetters 2, T,
Insert (@xc8d, V2) -> Jetters d, 8,
Insert (@0x532, V3) -> Jetters 2, 3,

o1 nNn O

123456789 abcdeff

/ \
/
123456789abcdeff
/ \
/ \
/ \
/ \
123456789 abcdef f 123456789 abcdef
| |
V3 V1

\

1 23456789abcdef
\
\
\
\
123456789 abcdef

|
V2

Key space
e Letus denote
= K :the set of all values a key can take
= 1. number of tuples in the associative array

e We say that the key space is “sparse” if n << K

e We call it “dense” otherwise

“Dense” key space

T = 4 n = 4096
Insert (0x001, W_0)

Insert (0x002, W_2)

Insexrt (@xfff, W_4095)

©123456789abcdef

/ \
/ \
123456789 abcdef f 1 23456789abcdef
/ \ \
/ \ \
/ \ \
/ \ \
1 23456789abcdef 123456789 abcdef 123456789 abcdef
| | |
V3 V1 V2

e Insertion/deletion/lookup are >~ O(3) = O(log;5 4096) = O(log,r)

e put...

e ...then why not use just a static array? (or equivalently choose T =12)

“Sparse” key space
e Tries only make sense when the key space is sparse

a static array of the size of the whole key space would be too big

e Complexity not dependent on number of entries

= Depends on key size and T’

e Memory overhead can be large

worst case: every leaf node has a single tuple, O (n X 2T)

ASSOCIATIVE ARRAYS:

IMPLEMENTATIONS USING
KEYS BITS

HASH TABLES

e Again, we denote
» K :the set of all values a key can take

= 1. number of tuples in the associative array

e If we had a “dense” key space (12 not much smaller than /A)

s then we would simply use a static array, indexed by keys

e Could we map K into something dense?

» ... and then use a static array

Hash function
e Ahash function hisamapping h: K — U where UCN and |[U| << |K]|

(indeed K may not be a finite set, e.g. for arbitrary-sized keys)

e Since |U| < | K|, hash functions are necessarily surjective

1k # ko such that h(k‘l) — h(k’z)

e Examples of (usually bad) hash functions:

» take just the lower 8 bits of the key
h : Z—{0,...,m— 1}, h(k) = k mod m

Hash table

e Ahash table is a static array of size |U|
e with an associated hash function h: K — U.
o (k,v) tuples are stored in the static array at index h(k)

e Since h is surjective, we may have collisions

(tuples with distinct keys stored at a same array index)

How to deal with collisions (1)

e Make the hash table
» astatic array of linked lists, or

» g static array of dynamic arrays

e In case of collision, resort to O(c) linear search
(where ¢ is the maximum number of collisions)

= intheworstcase,c = n

h(k) = k mod 16

Insert (@x9f2, V1)
Insert (@xc8d, V2)
Insert (0x532, V3)

->
->
->

h(@x9f2)
h(@xc8d)
h(@x532)

0x2
Oxd
0x2

123456789 abcdeff

| |
V1 V2

V3

h(k) = k mod 16
Insert (@x9f2,
Insert (@xc8&d,
Insert (0x532,
Lookup @x4d2

V1)
\V2)
V3)

->

-> h(0x9f2)
-> h(@xc8d)
-> h(0x532)
h(0x4d2) = Ox2

0x2
Oxd
0x2

123456789 abcdeff

| |
V1 V2

V3

h(k) = k mod 16
Insert (@x9f2,
Insert (@xc8&d,
Insert (0x532,
Lookup @x4d2

V1)
\V2)
V3)

->

-> h(0x9f2)
-> h(@xc8d)
-> h(0x532)
h(0x4d2) = Ox2

0x2
Oxd
0x2

*

123456789 abcdeff

| |
V1 V2

V3

h(k) = k mod 16
Insert (@x9f2,
Insert (@xc8&d,
Insert (0x532,
Lookup @x4d2

V1)
\V2)
V3)

->

-> h(0x9f2)
-> h(@xc8d)
-> h(0x532)
h(0x4d2) = Ox2

0x2
Oxd
0Ox2

->

not found

*

123456789 abcdef f

| |
V1 V2

V3

How to deal with collisions (2): Open addressing

e Insertionof (key, value):

n Step 0: Computeindex 1 = h(key)

m Step 1:If array[i] isempty,

o place (key, value) there, done.
n Step 2: Otherwise,

olet 1 = (i + 1) mod |U],

o go back to Step 1.

h(k) = k mod 16

Insert (@x9f2, V1)
Insert (@xc8d, V2)
Insert (0x532, V3)

->
->
->

h(@x9f2)
h(@xc8d)
h(@x532)

0x2
Oxd
0Ox2

0

1

2
|
|
V

1

3
|
|
V

3

456789 abcdef

|
V2

h(k) = k mod 16
Insert (@x9f2,
Insert (@xc8&d,
Insert (0x532,
Lookup @x4d2

V1)
\V2)
V3)

->

-> h(0x9f2)
-> h(@xc8d)
-> h(0x532)
h(0x4d2) = Ox2

0x2
Oxd
0Ox2

0

1

2
|
|
V

1

3
|
|
V

3

456789 abcdef

|
V2

h(k) = k mod 16
Insert (@x9f2,
Insert (@xc8&d,
Insert (0x532,
Lookup @x4d2

V1)
\V2)
V3)

->

-> h(0x9f2)
-> h(@xc8d)
-> h(0x532)
h(0x4d2) = Ox2

0x2
Oxd
0Ox2

456789 abcdef

|
V2

h(k) = k mod 16
Insert (@x9f2,
Insert (@xc8&d,
Insert (0x532,
Lookup @x4d2

V1)
\V2)
V3)

->

-> h(0x9f2)
-> h(@xc8d)
-> h(0x532)
h(0x4d2) = Ox2

0x2
Oxd
0Ox2

456789 abcdef

|
V2

h(k) = k mod 16
Insert (@x9f2,
Insert (@xc8&d,
Insert (0x532,
Lookup @x4d2

V1)
\V2)
V3)

->

-> h(0x9f2)
-> h(@xc8d)
-> h(0x532)
h(0x4d2) = Ox2

0x2
Oxd
0Ox2

0

1

2
|
|
V

1

3
|
|
V

3

56789%9abcdef

|
V2

h(k) = k mod 16
Insert (@x9f2,
Insert (@xc8&d,
Insert (0x532,
Lookup @x4d2

V1)
\V2)
V3)

->

-> h(0x9f2)
-> h(@xc8d)
-> h(0x532)
h(0x4d2) = Ox2

0x2
Oxd
0Ox2

->

not found

01

2
|
|
V

1

3
|
|
V

3

56789%9abcdef

|
V2

Lookup for key:
s Step 0: Computeindex 1 = h(key)

s Step 1:If array[i] matches key,
o return array[1i].
m Step 2:If array[i] isempty,
o return not found.
m Step 2: Otherwise,
olet i = (i + 1) mod |U]|,
o go back to Step 1.

Probing

e Insertion of (k,v):

= Step O:
o Computeindex hg = h(k)
o Let 3 =10

» Step 1:If array|i(hg,j)| isempty,
o place (k,v) there,done.
n Step 2: Otherwise,

olet 3 =7+ 1,
o go back to Step 1.

can be:

\/

» wherei(hg, J

= i(ho,J) = (ho + j) mod |U| as before
- 7“() (ho = K]) mod \U\ for some constant K (“linear probing”)
- Z(ho J) (hO + K7+ sz) mod |U| for some K, L (“quadratic probing”)

h(k) = k mod 16

Insert (@x9f2, V1)
Insert (@xc8d, V2)
Insert (0x532, V3)

->
->
->

h(@x9f2)
h(@xc8d)
h(@x532)

0x2
Oxd
0Ox2

0

1

2
|
|
V

1

3
|
|
V

3

456789 abcdef

|
V2

Good hash functions

e in practice, naive hash functions yield horrible collision rates

(even for random keys!)

e good hash functions perform great on real (non-random) keys

= they take a non-uniform distribution of keys over KX

= map it into a distribution over U that “looks” uniformly random
e Fowler-Noll-Vo (FNV), djb2, SipHash (lookup “non-cryptographic hash functions”)

e Such generic hash functions hg typically return 32-, 64- or 128-bit numbers.
» weuseindex h(k) = ho(k) mod |U|

Complexity of hash table operations

e performance depends on
= density (n/|U])

= key distribution

= hash function

= probing method

e when density approaches 1,
= increase |U| (e.g. double it)

= rebuild hash table (“rehashing”)

In practice

e aslong as collision rate is kept low

= insert/delete/lookup are essentially O (1)
e first hash table access is typically a cache miss (at least L1)

e but with open addressing, in case of collisions, probing may not be

ASSOCIATIVE ARRAYS:

PERFORMANCE

e Between self-balancing trees, tries and hash tables, no clearly superior data structure.

e Data- and application-dependent.

e Try, benchmark

e Hash tables often perform better... when suitable:
= when hashing is cheap

= when we can ensure few collisions

= when the order of magnitude of n known in advance

e Self-balancing trees are often more robust:

» much better worst case non-amortized complexity (rehashing!)

e Tries can be faster when keys have a special structure
» page table (virtual address translation)
= network routing (IP addresses)

» GPT-type tokenizers

Combinations are possible and commonly used

e Hash table as a static array of self-balancing trees

e Depth-K trie with self-balancing trees at leaf nodes

SPATIAL DATA STRUCTURES

Spatial data structures

e Spatial data structures store collections of vectors in IR™

e they allow operations such as

» insertion (add a vectorz € R™)

» deletion (remove one vector)

= find the vector closest to a giveny € [R™

= for every inserted vector, find its nearest neighbor

» for every inserted

» for every inserted

vector, finc

vector, finc

its k nearest neighbors

all other vectors within a distance d

The problem

“for every inserted vector, find all other vectors within a distance d”

Naively, this problem has O(nz) complexity:

R =1
For:=0,...,n—1:
Forj=:+1,...,n—1:
If ||z — 2’|| < d:
R:=RU{(4,7)}

Grids

Grids

Grids

e Pros:
= quadratic only within grid cells

e Cons:
» need finite bounds L < x; < U forall z, forall 2

n fixed cell size
o some may have too many &s

o many may be empty

Quadtrees and octrees

Quadtrees and octrees

Quadtrees and octrees

k-d trees

k-d trees

k-d trees

Quadtrees, octrees, k-d trees

e Pros:
= no need for finite bounds L < x; < U forall ;, for all 2
= variable cell size
e Limitations:
» fixed cell shape (cubes / boxes)
= poor fit for high-dimensional data:
o as 1 grows
o data size grows linearly

o number of cells grows exponentially

o even if all points are on a 2-dimensional hyperplane

Binary space partitioning

Binary space partitioning

Binary space partitioning

Binary space partitioning

e Pros:

» variable cell shape
e Cons:

= separating hyperplane computation is costly
e Limitations:

= not a good fit for high-dimensional data if, e.g. on a 2-dimensional curved manifold

Locality-sensitive hashing

Design a function h : R™ — R
suchthat ||y — x||small = |h(y) — h(x)|small, with high probability
Impossible in all generality

Depends on data

