LECTURE 21

ASSOCIATIVE ARRAYS

Associative arrays

- also known as maps or dictionaries
- are collections of (key, value) tuples, where
 - key could be any string of bits (integer, character string, other data)
 - value is any data
- that support
 - insertion (add a (key, value) tuple)
 - deletion (remove a (key, value) tuple)
 - lookup given a key,
 - find the corresponding value,
 - or determine that no such key has been added

Naive implementation

Just some list of (key, value) tuples:

```
(k0, v0)

(k1, v1)

(k2, v2)

(k3, v3)

(k4, v4)

(k5, v5)
```

	Insertion	Deletion (after lookup)	Lookup
Linked list	O(1)	O(1)	O(n)
Dynamic array	O(1)	O(n)	O(n)

ASSOCIATIVE ARRAYS:

IMPLEMENTATIONS USING A TOTAL ORDER ON KEYS

Total order on keys

- We assume that we can compare keys (i.e. evaluate key_i ≤ key_j for any i, j)
- Always possible in practice (reinterpret key bits as a big integer)
- Sometimes, a specialized ≤ operator makes sense (e.g. constant-size keys)
- key space may be infinite (arbitrary-sized keys)

Sorted dynamic array of (key, value) tuples

- Assume key $0 \le \text{key} 1 \le \ldots \le \text{keyn}$.
- Use bisection for key lookup

	Insertion	Deletion (after lookup)	Lookup
Linked list	O(1)	O(1)	O(n)
Dynamic array	O(1)	O(n)	O(n)
Sorted dynamic array	O(n)	O(n)	$\overline{O(\log(n))}$

Binary search tree

- Invariant: For any given node i,
 - key_j ≤ key_i for every descendant node j in the left subtree of i
 - key_j > key_i for every descendant node j in the right subtree of i

• Main concern: depending on insertion order, we may get

Self-balancing binary search tree

- AVL trees
- Red-black trees
- B-trees, splay trees, treaps, ...

	Insertion	Deletion (after lookup)	Lookup
Linked list	O(1)	O(1)	O(n)
Dynamic array	O(1)	O(n)	O(n)
Sorted dynamic array	O(n)	O(n)	$O(\log(n))$
Binary search tree	O(n)	O(n)	O((n))
AVL tree	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$
Red-black tree	$O(\log(n))$	$O(\log(n))$	$\overline{O(\log(n))}$

Self-balancing binary search tree

• Cache behavior: ok, not great (similiar to other binary tree structures, e.g. heap)

```
8
4 10
1 5 9 12
```

ASSOCIATIVE ARRAYS:

IMPLEMENTATIONS USING KEYS BITS

TRIES

Trie

- ullet A trie (or prefix tree) is a tree of static arrays of size 2^T
- ullet Key bits are divided into chunks of T bits: "letters"
- ullet Each T-bits letter gives an index for one node's static arrays
- Letters form a path in the tree (from root to leaf)

T = 4

T = 4
Insert (0x9f2, V1) -> letters 2, f, 9

T = 4Insert (0x9f2, V1) -> letters 2, f, 9

0 1 2 3 4 5 6 7 8 9 a b c d e f

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0x8d, V2) -> letters d, 8, c
Insert (0x532, V3) -> letters 2, 3, 5

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c
Insert (0x532, V3) -> letters 2, 3, 5

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c
Insert (0x532, V3) -> letters 2, 3, 5

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
T = 4
Insert (0x9f2, V1) -> letters 2, f, 9
Insert (0xc8d, V2) -> letters d, 8, c
Insert (0x532, V3) -> letters 2, 3, 5

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

V1

V2
```

Key space

- Let us denote
 - K: the set of all values a key can take
 - lacktriangleright n: number of tuples in the associative array
- ullet We say that the key space is "sparse" if n << K
- We call it "dense" otherwise

"Dense" key space

- ullet Insertion/deletion/lookup are $\simeq O(3) = O(\log_{16} 4096) = O(\log_{2^T} n)$
- but...
- ... then why not use just a static array? (or equivalently choose T = 12)

"Sparse" key space

- Tries only make sense when the key space is sparse a static array of the size of the whole key space would be too big
- Complexity not dependent on number of entries
 - lacksquare Depends on key size and T
- Memory overhead can be large

worst case: every leaf node has a single tuple, $O(n imes 2^T)$

ASSOCIATIVE ARRAYS:

IMPLEMENTATIONS USING KEYS BITS

HASH TABLES

- Again, we denote
 - K: the set of all values a key can take
 - n: number of tuples in the associative array
- ullet If we had a "dense" key space (n not much smaller than K)
 - then we would simply use a static array, indexed by keys
- ullet Could we map K into something dense?
 - ... and then use a static array

Hash function

- A hash function h is a mapping $h:K\to U$ where $U\subseteq \mathbb{N}$ and |U|<<|K| (indeed K may not be a finite set, e.g. for arbitrary-sized keys)
- Since |U| < |K|, hash functions are necessarily surjective $\exists k_1
 eq k_2$ such that $h(k_1) = h(k_2)$
- Examples of (usually bad) hash functions:
 - take just the lower 8 bits of the key
 - $lacksquare h : \mathbb{Z}
 ightarrow \{0,\ldots,m-1\}, \qquad h(k) = k mod m$

Hash table

- ullet A hash table is a static array of size |U|
- ullet with an associated hash function h:K o U.
- ullet (k,v) tuples are stored in the static array at index h(k)
- ullet Since h is surjective, we may have collisions (tuples with distinct keys stored at a same array index)

How to deal with collisions (1)

- Make the hash table
 - a static array of linked lists, or
 - a static array of dynamic arrays
- In case of collision, resort to O(c) linear search (where c is the maximum number of collisions)
 - in the worst case, c=n

```
h(k) = k mod 16
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) -> h(0xc8d) = 0xd
Insert (0x532, V3) -> h(0x532) = 0x2

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

How to deal with collisions (2): Open addressing

- Insertion of (key, value):
 - Step 0: Compute index i = h(key)
 - Step 1: If array[i] is empty,
 - place (key, value) there, done.
 - Step 2: Otherwise,
 - \circ let i = (i + 1) mod |U|,
 - go back to Step 1.

```
h(k) = k mod 16
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) -> h(0xc8d) = 0xd
Insert (0x532, V3) -> h(0x532) = 0x2

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
h(k) = k mod 16
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) -> h(0xc8d) = 0xd
Insert (0x532, V3) -> h(0x532) = 0x2
Lookup 0x4d2 -> h(0x4d2) = 0x2

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
h(k) = k mod 16
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) -> h(0xc8d) = 0xd
Insert (0x532, V3) -> h(0x532) = 0x2
Lookup 0x4d2 -> h(0x4d2) = 0x2

*

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
h(k) = k mod 16
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) -> h(0xc8d) = 0xd
Insert (0x532, V3) -> h(0x532) = 0x2
Lookup 0x4d2 -> h(0x4d2) = 0x2

*

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

```
h(k) = k mod 16
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) -> h(0xc8d) = 0xd
Insert (0x532, V3) -> h(0x532) = 0x2
Lookup 0x4d2 -> h(0x4d2) = 0x2 -> not found

*

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

- Lookup for key:
 - Step 0: Compute index i = h(key)
 - Step 1: If array[i] matches key,
 - ∘ return array[i].
 - Step 2: If array[i] is empty,
 - return not found.
 - Step 2: Otherwise,
 - \circ let i = (i + 1) mod |U|,
 - go back to Step 1.

Probing

- Insertion of (k, v):
 - Step 0:
 - \circ Compute index $\,h_0=h(k)\,$
 - \circ Let j=0
 - Step 1: If $\mathbf{array}[i(h_0,j)]$ is empty,
 - \circ place (k,v) there, done.
 - Step 2: Otherwise,
 - let j = j + 1,
 - go back to Step 1.
- where $i(h_0, j)$ can be:
 - $ullet i(h_0,j)=(h_0+j) mod |U|$ as before
 - $i(h_0,j)=(h_0+Kj) \bmod |U|$ for some constant K ("linear probing")
 - $i(h_0,j)=(h_0+Kj+Lj^2) mod |U|$ for some K,L ("quadratic probing")

```
h(k) = k mod 16
Insert (0x9f2, V1) -> h(0x9f2) = 0x2
Insert (0xc8d, V2) -> h(0xc8d) = 0xd
Insert (0x532, V3) -> h(0x532) = 0x2

0 1 2 3 4 5 6 7 8 9 a b c d e f
```

Good hash functions

- in practice, naive hash functions yield horrible collision rates (even for random keys!)
- good hash functions perform great on real (non-random) keys
 - lacktriangle they take a non-uniform distribution of keys over K
 - lacktriangle map it into a distribution over U that "looks" uniformly random
- Fowler-Noll-Vo (FNV), djb2, SipHash (lookup "non-cryptographic hash functions")
- ullet Such generic hash functions h_0 typically return 32-, 64- or 128-bit numbers.
 - lacksquare we use index $h(k) = h_0(k) mod |U|$

Complexity of hash table operations

- performance depends on
 - density (n/|U|)
 - key distribution
 - hash function
 - probing method
- when density approaches 1,
 - ullet increase |U| (e.g. double it)
 - rebuild hash table ("rehashing")

In practice

- as long as collision rate is kept low
 - ullet insert/delete/lookup are essentially O(1)
- first hash table access is typically a cache miss (at least L1)
- but with open addressing, in case of collisions, probing may not be

ASSOCIATIVE ARRAYS:

PERFORMANCE

• Between self-balancing trees, tries and hash tables, no clearly superior data structure.

• Data- and application-dependent.

Try, benchmark

- Hash tables often perform better... when suitable:
 - when hashing is cheap
 - when we can ensure few collisions
 - lacktriangle when the order of magnitude of n known in advance
- Self-balancing trees are often more robust:
 - much better worst case non-amortized complexity (rehashing!)
- Tries can be faster when keys have a special structure
 - page table (virtual address translation)
 - network routing (IP addresses)
 - GPT-type tokenizers

Combinations are possible and commonly used

Hash table as a static array of self-balancing trees

• Depth-K trie with self-balancing trees at leaf nodes

• ...

SPATIAL DATA STRUCTURES

Spatial data structures

- ullet Spatial data structures store collections of vectors in \mathbb{R}^m
- they allow operations such as
 - insertion (add a vector $x \in \mathbb{R}^m$)
 - deletion (remove one vector)
 - lacksquare find the vector closest to a given $y \in \mathbb{R}^m$
 - for every inserted vector, find its nearest neighbor
 - for every inserted vector, find its k nearest neighbors
 - ullet for every inserted vector, find all other vectors within a distance d

The problem

"for every inserted vector, find all other vectors within a distance d"

0

Naively, this problem has $O(n^2)$ complexity:

$$egin{aligned} R := \emptyset \ & ext{For } i = 0, \ldots, n-1: \ & ext{For } j = i+1, \ldots, n-1: \ & ext{If } ||x^i - x^j|| \leq d: \ & ext{$R := R \cup \{(i,j)\}$} \end{aligned}$$

Grids

Grids

		0	•	
	•			
	•			
			•	

Grids

- Pros:
 - quadratic only within grid cells
- Cons:
 - lacksquare need finite bounds $L \leq x_i \leq U$ for all x, for all i
 - fixed cell size
 - \circ some may have too many xs
 - many may be empty

Quadtrees and octrees

					•			•	
			0		0		0		
	•		0	•		•			
						0		0	
					0				
	•	•							
									•

Quadtrees and octrees

Quadtrees and octrees

k-d trees

k-d trees

k-d trees

Quadtrees, octrees, k-d trees

- Pros:
 - lacksquare no need for finite bounds $L \leq x_i \leq U$ for all x, for all i
 - variable cell size
- Limitations:
 - fixed cell shape (cubes / boxes)
 - poor fit for high-dimensional data:
 - \circ as m grows
 - data size grows linearly
 - number of cells grows exponentially
 - even if all points are on a 2-dimensional hyperplane

- Pros:
 - variable cell shape
- Cons:
 - separating hyperplane computation is costly
- Limitations:
 - not a good fit for high-dimensional data if, e.g. on a 2-dimensional curved manifold

Locality-sensitive hashing

- ullet Design a function $h:\mathbb{R}^m
 ightarrow \mathbb{R}$
- ullet such that ||y-x|| small $\Rightarrow |h(y)-h(x)|$ small, with high probability
- Impossible in all generality
- Depends on data