LECTURE 20

ABSTRACT DATA TYPES

DATA STRUCTURES

e An abstract data type

» Specifies supported operations

e Adata structureis animplementation of an abstract data type
» Specifies data layout in memory

s Specifies algorithms for operations

Lists

e support storing multiple elements together
and optionally append, insert, delete, random access, ...
e implementations:
» dynamic arrays
everything O(1) in practice except insert/delete O (n)
s linked lists

everything O(1) (but slower than arrays) except random access O(n)

STACKS / LIFO

e Astackis an ordered collection of elements

e supports two operations:

¢¢

= “push”:; add an element

(44

 “pop”: retrieve-and-remove the last-added element

=> last in, first out (LIFO)

Static array implementation of a stack

Useful only when there is a hard limit on the number of elements
We maintain a static array
and a stack pointer (or top index)

this is how “the” stack is implemented

(for storing function arguments, local variables and return addresses)

2 stack pointer

> pushA
push B
push C
Pop
pPop
push E
push F
push G
pPop
pPop
Pop
Pop

push A
push B
push C
Pop
pPop
push E
push F
push G
pPop
pPop
Pop
Pop

2 stack pointer

push A
push B
push C
Pop
pPop
push E
push F
push G
pPop
pPop
Pop
Pop

2 stack pointer

push A
push B
push C
Pop
pPop
push E
push F
push G
pPop
pPop
Pop
Pop

2 stack pointer

push A
push B
push C
Pop
pop
push E
push F
push G
pop
pPop
Pop
pPop

>C

2 stack pointer

push A
push B
push C
Pop
pPop
push E
push F
push G
pop
pPop
Pop
pPop

A stack pointer

>B

push A
push B
push C
Pop
pPop
push E
push F
push G
pop
pPop
Pop
pPop

>B

2 stack pointer

push A
push B
push C
Pop
pPop
push E
push F
push G
pop
pPop
Pop
pPop

>B

2 stack pointer

push A
push B
push C
Pop
pPop
push E
push F
push G
pop
pPop
Pop
pPop

>B

A stack pointer

push A
push B
push C
Pop
pPop
push E
push F
push G
pop
Pop
Pop
pPop

>B

>G

2 stack pointer

push A
push B
push C
Pop
pPop
push E
push F
push G
pPop
pPop
Pop
pPop

>B

>G

>F

2 stack pointer

1 stack pointer

push A
push B
push C
pop >C
pop >B
push E
push F
push G
pop >G
pop > F
pop >E
> pop

2 stack pointer

push A
push B
push C
pop >C
pop >B
push E
push F
push G
pop >G
pop >F
pop >E
pop >A

Linked list implementation of a stack

e Pro: No hard limit on number of elements

e Con:

= Memory allocation for every push

= Memory freed for every pop

Dynamic array implementation of a stack

e Pros:
= No hard limit on number of elements

= Memory management overhead is small

e Con:

= No pointer stability

2 stack pointer

> pushA
push B
push C
p = address of C
push D
push E
change Cinto C’ using p

1 stack pointer

push A

push B

push C

p = address of C

push D

push E

change Cinto C’ using p

2 stack pointer

push A

push B

push C

p = address of C

push D

push E

change Cinto C’ using p

2 stack pointer

push A

push B

push C

p = address of C

push D

push E

change Cinto C’ using p

1~ 2 stack pointer

push A

push B

push C

p = address of C

push D

push E

change Cinto C’ using p

NP 2 stack pointer

push A

push B

push C

p = address of C

push D

push E

change Cinto C’ using p

™Pp

push A
push B
push C
p = address of C
push D
push E

> change Cinto C’ usingp

2 stack pointer

T™Pp

push A

push B

push C

p = address of C

push D

push E

change Cinto C’ using p

2 stack pointer

Stack implementations

Implementation

Size Requires allocations

Pointer stability

staticarray constant no yes
dynamic array can grow when growing no
linked list can grow every push yes

e Known as arena al

e Implemented as a

Arena

ocator, region-based allocator, zone-based allocator, obstack

ist of static array stacks

2 stack pointer
2 block 0

push A list of regions: block 0
push B

push C

p =address of C

push D

push E

change Cinto C’ using p
push F

Pop

Pop

pPop

pop

2 stack pointer
2 block 0

push A list of regions: block 0
push B

push C

p =address of C

push D

push E

change Cinto C’ using p
push F

Pop

Pop

pPop

pop

2 stack pointer

2 block 0

push A

push B

push C

p = address of C
push D

push E

change Cinto C’ using p
push F

Pop

Pop

pPop

pop

list of regions:

block 0

2 stack pointer

2 block 0

push A

push B

push C

p = address of C
push D

push E

change Cinto C’ using p
push F

Pop

Pop

pPop

pop

list of regions:

block 0

1~ 2 stack pointer

2 block 0

push A

push B

push C

p = address of C
push D

push E

change Cinto C’ using p
push F

Pop

Pop

pPop

pop

list of regions:

block 0

2 block 0

push A

push B

push C

p = address of C
push D

push E

change Cinto C’ using p
push F

Pop

Pop

pPop

pop

2 stack pointer

list of regions:

block 0

™P
2~ block 0

push A

push B

push C

p = address of C
push D

push E

change Cinto C’ using p
push F

Pop

Pop

pPop

pPop

list of regions:

2 stack pointer

~ block 1

block 0
block 1

™P
2~ block 0

push A

push B

push C

p = address of C
push D

push E

change Cinto C’ using p
push F

Pop

Pop

pPop

pPop

list of regions:

2 stack pointer

~ block 1

block 0
block 1

™P
2~ block 0

push A

push B

push C

p = address of C
push D

push E

change Cinto C’ using p
push F

Pop

Pop

pPop

pPop

list of regions:

2 stack pointer

~ block 1

block 0
block 1

™P
2 block 0

push A

push B

push C

p =address of C
push D

push E

change Cinto C’ using p
push F

pop ->F

Pop

pPop

pPop

list of regions:

2 stack pointer

~ block 1

block 0
block 1

™P
2 block 0

push A

push B

push C

p =address of C
push D

push E

change Cinto C’ using p
push F

pop ->F

pop -E

pPop

pPop

list of regions:

2 stack pointer

~ block 1

block 0
block 1

A 2 stack pointer
» block 0

push A list of regions: block 0
push B
push C
p =address of C
push D
push E
change Cinto C’ using p
push F
pop ->F
pop -E
pop ->D
> pop

2 stack pointer

2 block 0

push A

push B

push C

p = address of C
push D

push E

change Cinto C’ using p
push F

pop ->F

pop -E

pop ->D

pop ->C

list of regions:

block 0

Stack implementations

Implementation

Size Requires allocations

Pointer stability

static array constant no yes
dynamic array can grow when growing no
linked list can grow every push yes
arena can grow when growing yes

More options

Combination of other data structures and indirection can be used,
depending on desired properties.

QUEUES / FIFO

e Aqgueueis an ordered collection of elements
e supports two operations:

» “enqueue”: add an element

n “dequeue”: retrieve-and-remove the earliest-added element

=> first in, first out (FIFO)

Ring buffer implementation of a queue

e Useful only when there is a hard limit on the number of elements
e We maintain a static array

e and two pointers/indices: head and tail

» head

A tail

enqueue A
enqueue B
dequeue
dequeue
enqueue C
enqueue D
enqueue E
enqueue F
dequeue
dequeue
dequeue
enqueue G
dequeue

dequeue

~ head

A tail

enqueue A
enqueue B
dequeue
dequeue
enqueue C
enqueue D
enqueue E
enqueue F
dequeue
dequeue
dequeue
enqueue G
dequeue

dequeue

~ head

A tail

enqueue A
enqueue B
dequeue
dequeue
enqueue C
enqueue D
enqueue E
enqueue F
dequeue
dequeue
dequeue
enqueue G
dequeue

dequeue

1 head
A tail
enqueue A
enqueue B

dequeue ->A
dequeue
enqueue C
enqueue D
enqueue E
enqueue F
dequeue
dequeue
dequeue
enqueue G
dequeue

dequeue

~ head

A tail

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue
dequeue
dequeue
enqueue G
dequeue

dequeue

» head

A tail

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue
dequeue
dequeue
enqueue G
dequeue

dequeue

» head

A tail

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue
dequeue
dequeue
enqueue G
dequeue

dequeue

1 head
A tail
enqueue A
enqueue B

dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue
dequeue
dequeue
enqueue G
dequeue

dequeue

~ head

A tail

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue
dequeue
dequeue
enqueue G
dequeue

dequeue

~ head

A tail

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue ->C
dequeue
dequeue
enqueue G
dequeue

dequeue

~ head

A tail

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue ->C
dequeue ->D
dequeue
enqueue G
dequeue

dequeue

~ head

A tail

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue ->C
dequeue ->D
dequeue >E
enqueue G
dequeue

dequeue

A tail

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue ->C
dequeue ->D
dequeue >E
enqueue G
dequeue

dequeue

» head

» head

A tail

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue ->C
dequeue ->D
dequeue >E
enqueue G

dequeue ->F

> dequeue

enqueue A
enqueue B
dequeue ->A
dequeue ->B
enqueue C
enqueue D
enqueue E
enqueue F
dequeue ->C
dequeue ->D
dequeue >E
enqueue G
dequeue ->F

dequeue -G

» head

A tail

When head == tail;

the queue is empty? or the queue is full?
1 head A head
A tail A tail

e maintain a variable with the number of elements currently in the queue
e or keep incrementing head and tail, and index the static array as

array[head % size] and

array[tail % size]

e Audio playback/recording devices
e Video capture devices
e Special case (double-buffering, i.e. size = 2) for computer graphics

e Network devices (routers, switches)

More options

use dynamic arrays

use linked lists

use indirection

depending on specific needs

PRIORITY QUEUES

e Apriority queue is a collection of elements, each with an associated priority

e supports two operations:

¢¢

» “push”: add an element-priority tuple

¢¢

= “pop”: retrieve-and-remove the highest-priority element

Implementation of a priority queue

e Store element-priority tuplesin an array or in a linked list
o “push”: O(1) of the underlying data structure

e “pop”: scan all elements, find max priority, O(n)

Binary heap implementation of a priority queue

30
\

e Binary heaps represent a priority queue as

» a binary tree (every node has at most two children)

» thatis complete (every level full, except possibly the deepest)
e Every node is labeled by the corresponding element’s priority
e Tree has the heap property:

= Priority of any node > priority of its children

= & Priority of any node > priority of all its descendants

Binary heap push

e Step 0: Add new element at the first free slot on the deepest level
e Step 1:
n |fits priority is not higher than its parent’s,
o the heap property is satisfied, we are done
 |fits priority is higher than its parent’s,
o swap them,

o go back to Step 1, looking at the pushed element’s new position

Binary heap push

e Step 0: Add new element at the first free slot on the deepest level
e Step 1:
n |fits priority is not higher than its parent’s,
o the heap property is satisfied, we are done
 |fits priority is higher than its parent’s,
o swap them,

o go back to Step 1, looking at the pushed element’s new position

Binary heap push

e Step 0: Add new element at the first free slot on the deepest level
e Step 1:
n |fits priority is not higher than its parent’s,
o the heap property is satisfied, we are done
 |fits priority is higher than its parent’s,
o swap them,

o go back to Step 1, looking at the pushed element’s new position

Binary heap push: 14

9 14 <--- heap property satisfied

e Add new element at the first free slot on the deepest level
e Ifitis nothigherthan its parent’s,

» the heap property is satisfied, we are done

Binary heap push: 28

9 28 <--- heap property NOT satisfied

e Add new element at the first free slot on the deepest level
e |fits priority is higher than its parent’s,

= swap them

Binary heap push: 28

28 <--- heap property satisfied below this (28 > 15)

Heap property satisfied below the pushed element’s new position

fits priority is not higher than its new parent’s,

» the heap property is satisfied, we are done

Binary heap push: 35

9 35 <--- heap property NOT satisfied

e Add new element at the first free slot on the deepest level
e |fits priority is higher than its parent’s,

= swap them

Binary heap push: 35

35 <--- heap property NOT satisfied above

Heap property satisfied be

fits priority is still higher t

= swap them

ow the pushed element’s new position

nan its new parent’s,

Binary heap push: 35

30 <--- heap property satisfied below this (30 > 15)

e Heap property satisfied below the pushed element’s new position

= new child was an ancestor of its direct children

e Continue until heap property is satisfied

Binary heap pop

e Step 0: Replace root with last element (on deepest level)
e Step 1:
m |fits priority is not lower than its children’s,
o the heap property is satisfied, we are done
n |fits priority is lower than one of its children’s,
o swap with the highest-priority child,

o go back to Step 1, looking at the pushed element’s new position

Binary heap pop

e Step 0: Replace root with last element (on deepest level)
e Step 1:
m |fits priority is not lower than its children’s,
o the heap property is satisfied, we are done
n |fits priority is lower than one of its children’s,
o swap with the highest-priority child,

o go back to Step 1, looking at the pushed element’s new position

Binary heap pop
25 <--- priority = its children's

15 <--- heap property untouched here

e Step 0: Replace root with last element (on deepest level)
e Step 1:
m |fits priority is not lower than its children’s,
o the heap property is satisfied, we are done
n |fits priority is lower than one of its children’s,
o swap with the highest-priority child,

o go back to Step 1, looking at the pushed element’s new position

Binary heap pop

15 18 was a descendant of 25

e Step 0: Replace root with last element (on deepest level)
e Step 1:
m |fits priority is not lower than its children’s,
o the heap property is satisfied, we are done
n |fits priority is lower than one of its children’s,
o swap with the highest-priority child,

o go back to Step 1, looking at the pushed element’s new position

Binary heap operations
e Push: O(log,(n))

e Findmax: O(1)

e Pop: O(log,(n))

Complete binary data structure

Binary heaps are complete binary trees

We can avoid allocation for every “push” by storing nodes in an array

Depth £ of the tree has at most 2 nodes, '/

Depth £ of the tree has exactly 2t nodes, except for the deepest level

depth |0 |1 1|2 2 2 2

3 33 3 3 3 3 3

index |01 2|3 4 5 6

There are exactly (2z — 1) nodes of with de

/f 8 9 10 11 12 13 14
oth < £

depth @
depth 1
depth 2
depth 3

Storage scheme

0
1 2

/7 8 9 10 11 12 13 14

depth |01 1|2 2 2 2|3 3 3 3 3 3 3 3

index |01 2/3 4 5 6|7 8 9 10 11 12 13 14

e If anode hasindex 7
e its children are stored atindices 27 + 1 and 27 + 2
e its parentis stored atindex | (7 — 1)/2]

depth @
depth 1
depth 2
depth 3

Storage scheme

0

1 2
3 4 5 6
7 8 9 10 11 12 13 14
depth |01 1/2 2 2 2,3 3 3 3 3 3 3 3
index | 0 2 4 5 6 9 10 11 12 13 14

e Ifanode hasindex 7
e its children are stored atindices 27 + 1 and 27 + 2
e its parentis stored atindex | (j — 1) /2]

depth @
depth 1
depth 2
depth 3

Storage scheme

0
1 2

/7 8 9 10 11 12 13 14

7 8-11 12 13 14

depth |01 1/2 2 2 2,3 3 3 3 3 3 3 3
index

e Ifanode hasindex 7
e its children are stored atindices 27 + 1 and 27 + 2
e its parentis stored atindex | (j — 1) /2]

depth @
depth 1
depth 2
depth 3

Storage scheme

0
1 2

/7 8 9 10 11 12 13 14

N ol OIEEED W B

depthOlH222233333333

e Ifanode hasindex 7
e its children are stored atindices 27 + 1 and 27 + 2
e its parentis stored atindex | (j — 1) /2]

depth @
depth 1
depth 2
depth 3

Storage scheme

0
1 2

/7 8 9 10 11 12 13 14

depth |01 1{2 2 2 2|3 3 3 3 3 3 3 3
index | 0|1 3 4 5 7 8 9 10 11 12 -
e Ifanode hasindex 7

e its children are stored atindices 27 + 1 and 27 + 2
e its parentis stored atindex | (j — 1) /2]

Binary heap with array storage

e Superior toin-memory tree (with pointers)

= We avoid allocation for every “push”

» We avoid data dependencies (load node data to get pointer to parent/children)
o Still,

» Push and pop operations are tough for branch predictor

» Jumpstoindices (25 +1), (25 4+2) or [(j —1)/2]

not cache-friendly for large 7

Priority queue:

e Assume that
= priorities are distinct integersp € {0,..., P — 1}
= we always push at a priority < current max priority
e Then,
= we allocate a static array of size P
= Push: store in array atindex p O(1)
= Pop: sweep array backwards O(P/n) amortized

priority 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
element

Max

> pushA, 12
push B, 5
push C, 9
Pop
push E, 3
push F, 10
Pop
push G, 4
pPop
Pop
Pop
push H, 1
pPop
Pop

priority
element

Max

push A 12
push B, 5
push C, 9
Pop

push E, 3
push F, 10
Pop

push G, 4
pPop

Pop

Pop

push H, 1
pPop

Pop

0

38

9

10 11 12 13 14

priority
element

Max

push A 12
push B, 5
push C, 9
Pop

push E, 3
push F, 10
Pop

push G, 4
pPop

Pop

Pop

push H, 1
pPop

Pop

0

38

9

10 11 12 13 14

priority
element

Max

push A 12
push B, 5
push C, 9
Pop

push E, 3
push F, 10
Pop

push G, 4
pPop

Pop

Pop

push H, 1
pPop

Pop

0

10 11 12 13 14

priority
element

Max

push A 12
push B, 5
push C, 9
pop >A
push E, 3
push F, 10
Pop

push G, 4
pPop

Pop

Pop

push H, 1
pPop

Pop

0

10 11 12 13 14

priority
element

Max

push A 12
push B, 5
push C, 9
pop >A
push E, 3
push F, 10
Pop

push G, 4
pPop

Pop

Pop

push H, 1
pPop

Pop

0

3

4

5 ©

10 11 12 13 14

100

priority
element

Max

push A 12
push B, 5
push C, 9
pop >A
push E, 3
push F, 10
Pop

push G, 4
pPop

Pop

Pop

push H, 1
pPop

Pop

0

1

2 3

4

5 ©

7

38

9 10 11 12 13 14

T

101

priority
element

Max

push A 12

push B, 5

push C, 9

pop >A
push E, 3

push F, 10

pop > F
push G, 4

pPop

Pop

Pop

push H, 1

pPop

Pop

0

1

2 3

4

5 ©

7

38

9 10 11 12 13 14

™

102

priority
element

Max

push A 12

push B, 5

push C, 9

pop >A
push E, 3

push F, 10

pop > F
push G, 4

pPop

Pop

Pop

push H, 1

pPop

Pop

0

I 10 11 12 13 14

103

priority
element

Max

push A 12

push B, 5

push C, 9

pop >A
push E, 3

push F, 10

pop > F
push G, 4

pop >C
Pop

Pop

push H, 1

pPop

Pop

0

I 10 11 12 13 14

104

priority
element

Max

push A 12

push B, 5

push C, 9

pop >A
push E, 3

push F, 10

pop > F
push G, 4

pop >C
pop > B
Pop

push H, 1

pPop

Pop

0

I 10 11 12 13 14

105

priority
element

Max

push A 12

push B, 5

push C, 9

pop >A
push E, 3

push F, 10

pop > F
push G, 4

pop >C
pop > B
pop >G
push H, 1

pPop

Pop

0

I 10 11 12 13 14

106

priority
element

Max

push A 12

push B, 5

push C, 9

pop >A
push E, 3

push F, 10

pop > F
push G, 4

pop >C
pop > B
pop >G
push H, 1

pPop

Pop

0

I 10 11 12 13 14

107

priority 0 7 10 11 12 13 14

clement l - - A
Max
push A 12
push B, 5
push C, 9
pop >A
push E, 3
push F, 10
pop > F
push G, 4
pop >C
pop > B
pop >G
push H, 1
pop > E

> Pop

108

priority
element

Max

push A 12

push B, 5

push C, 9

pop >A
push E, 3

push F, 10

pop > F
push G, 4

pop >C
pop > B
pop >G
push H, 1

pop > E
pop > H

0

I 10 11 12 13 14

109

e good for branch predictor

e great for caches

e we can store, additionally, an array of P bits (“bitmap”)
= bit p setto one if there is an element with priority p

= makes “pop” operations essentially 64x faster

bitmap priority queues

e Linux kernel: scheduling parallel tasks

e Linear algebra: sparse matrices

111

SORT OPERATIONS

Heap sort

e Push n elements to heap: O(n log n)

e Pop 1 elements one by one: O(n log n)

= (O(nlogn) worst case

Method Average Worst case Additional storage Combines with insert. sort

Quicksort O (n log(n)) O(nz) none yes
Mergesort O(nlog(n)) O(nlog(n)) n yes
Heapsort (O(nlog(n)) O(nlog(n)) none no

114

e Assume that
= we sort 1 elements with priorities S C {0,...,P — 1}
= no two elements have the same priority (hence P > n)
e Then,
= we represent the elements as a bitmap priority queue
= Push: O(n)
» Pop: O(P)

= O(n+ P)

counting sort

e Assume that
= we sort 1 elements with priorities S C {0,...,P — 1}
» P < n (wemay have duplicates)
e Then,
= we allocate a static array count of size P
= we allocate a static array result of sizen
= we count the number of occurences of each priority: O (1)
= we sweep count backwards to determine offsets: O(P) = O(n)

= we construct the sorted result list: O(n)

= O(n)

116

priority

™

count index
count value

™

result index
result

™

0

priority 3
0

0
count index

countvalue 0

result index
result

™

priority 3

count index

countvalue 0

result index
result

™

priority 3

count index

countvalue 0

result index
result

™

priority

count index

count value

result index
result

™

0

priority

count index

count value

result index
result

™

0

priority

count index

count value

result index
result

™

0

priority

count index

count value

result index
result

™

0

priority

count index

count value

result index
result

™

0

priority 3

count index

countvalue 0

result index
result

™

priority

count index

count value

result index
result

™

0

priority

count index

count value

result index
result

™

0

priority

count index

count value

result index
result

™

0

priority

count index

count value

result index
result

™

0

priority

count index

count value

result index
result

™

0

priority

count index

count value

result index
result

™

0

priority 3

count index

countvalue 0

result index
result

™

priority

count index

count value

result index
result

™

0

10

priority

count index

count value

result index
result

™

10

10

priority

™

count index
count value

™

result index
result

™

10

10

priority

count index

count value

result index

result

10

10

priority 3 6

0
count index

countvalue 10 10

result index

result

priority 3 6

. 0 1
count index

countvalue 10 9
N

, 0 1
result index

result

priority 3

0
count index

countvalue 10

result index

result

9

priority 3

0
count index

countvalue 10

result index

result

9

priority 3

count index

countvalue 10

result index

result 7

priority 3

count index

countvalue 10

result index

result 7

priority 3

count index

countvalue 10

result index

result 7

priority 3

count index

countvalue 10

result index

result 7

priority 3

count index

countvalue 10

result index

result 7

priority 3

count index

countvalue 10

N

, 0
result index
result 7

™

