
LECTURE 14

1

TOOLS FOR PROGRAM CORRECTNESS

2

Today:

1. Documentation
2. Testing
3. Static analysis
4. Dynamic analysis

Each uncovers bugs

For each, there are useful tools (compilers can help!)

3

DOCUMENTATION

4

Documentation is GOOD

Allows others to understand your code

Allows yourself (in a few weeks) to understand your own code

Helps make your thought process and assumptions explicit

5

Types of documentation
Reference manuals

Tutorials

Questions and answers (Q&A)

6

Reference manuals
Authoritative source of information

If the code does not do what the manual says, then the code is wrong.

Must be complete

Must use precise language

Even at the cost of legibility

Examples: “man” pages, C standard, IEEE-754 specifications

7

Tutorials
Beginner-friendly

Usually emphasize getting things to work quickly

even at the cost of completeness

Good tutorials do not sacrifice accuracy (but many bad ones do)

Examples: various books (K&R C, Think Python) and intro material

8

Questions and answers (Q&A)
Prioritize quick answers to frequently asked questions

Not exhaustive

Examples: Stack Overflow, various FAQs

9

When reading documentation:

as a beginner, aim for tutorials and Q&As

as you become an expert, you need a reference manual.

When writing documentation:

ideally, you write all three!

10

Automated documentation
Automated documentation systems

read and parse source code

find functions (methods, classes, …)

create a (PDF or webpage) document containing function signatures

specially-formatted comments in the source code are copied into the documentation

along with the corresponding function signatures

11

Doxygen

12

13

Python docstrings

14

Automated documentation systems
General:

doxygen

sphinx

Python-specific:

pdoc

PyDoc

pydoctor

Note: Some projects choose to not use automated documentation.

15

TESTING

16

/*
This functions returns:
5 if one or both of its arguments are 5
0 otherwise

*/
int five_if_some_five(int a, int b)
{

if (a != 5)
a = 0;

if (b != 5)
b = 0;

return a | b;
}

int tests()
{

int errors = 0;

errors += (five_if_some_five(100, 100) != 0);
errors += (five_if_some_five(100, 5) != 5);

return errors;
}

17

Test coverage
line coverage:

is every line of code covered by some test case?

branch coverage:

for every conditional branch, is there a test covering each of the two possibilities

(taking the branch or not taking it)?

18

clang -Wall -O3 --coverage -c -o five.o five.c
clang -Wall -O3 --coverage -o test test.c five.o

./test

Errors: 0

gcov five.c

File 'five.c'
Lines executed:100.00% of 4
Creating 'five.c.gcov'

Lines executed:100.00% of 4

gcov -b five.c

File 'five.c'
Lines executed:100.00% of 4
Branches executed:100.00% of 4
Taken at least once:75.00% of 4
No calls
Creating 'five.c.gcov'

Lines executed:100.00% of 4

19

function five_if_some_five called 2 returned 100% blocks executed 100%
2: 22:int five_if_some_five(int a, int b)
-: 23:{
2: 24: if (a != 5)

branch 0 taken 100% (fallthrough)
branch 1 taken 0%

-: 25: a = 0;
-: 26:
2: 27: if (b != 5)

branch 0 taken 50% (fallthrough)
branch 1 taken 50%

-: 28: b = 0;
-: 29:
2: 30: return a | b;
-: 31:}

20

Line coverage vs. branch coverage
/*
This functions returns:
5 if one or both of its arguments are 5
0 otherwise

*/
int five_if_some_five(int a, int b)
{

if (a != 5)
a = 0;

if (b != 5)
b = 0;

return a | b;
}

Line coverage: 100% Branch coverage: 50%

int tests()
{

int errors = 0;

errors += (five_if_some_five(100, 100) != 0);

return errors;
}

21

How does it work?
clang -Wall -O3 --coverage -c -o five.o five.c

/*
This functions returns:
5 if one or both of its arguments are 5
0 otherwise

*/
int five_if_some_five(int a, int b)
{

line_covered(4);
if (a != 5) { // line 4

branch_covered(4, 1);
line_covered(5); // line 5
a = 0;

} else {
branch_covered(4, 0);

}

line_covered(7);
if (b != 5) { // line 7

branch_covered(7, 1);
line_covered(8);
b = 0; // line 8

} else {
branch_covered(7, 0);

}

line_covered(10);
return a | b; // line 10

}

22

Limitations of test coverage measures (1)
/*
This functions returns:
5 if one or both of its arguments are 5
0 otherwise

*/
int WRONG_five_if_some_five(int a, int b)
{

return a | b;
}

Line coverage: 100% Branch coverage: 100%

int test()
{

return (WRONG_five_if_some_five(0, 5) != 5);
}

23

Limitations of test coverage measures (2)
/*
This functions returns:
5 if one or both of its arguments are 5
0 otherwise

*/
int WRONG_five_if_some_five(int a, int b)
{

if (a != 5)
a = 0;

if (b != 5)
b = 0;

return a + b;
}

Line coverage: 100% Branch coverage: 100%

int tests()
{

int errors;

errors += (WRONG_five_if_some_five(100, 100) != 0);
errors += (WRONG_five_if_some_five(5, 100) != 5);
errors += (WRONG_five_if_some_five(100, 5) != 5);

return errors;
}

24

Assertions
Assertions are used to document (and check) assumptions made in the code.

An assertion failure

should correspond to a bug in your code,

triggers an immediate crash (abort()) of your program.

25

#include <assert.h>

int gcd(int a, int b)
{

if (a < b) {
int r = a;
a = b;
b = r;

}

while (b != 0) {
assert(a >= b); // <---- this should always be true

int r = a % b;
a = b;
b = r;

}

return a;
}

26

Disabling assertions

(equivalent to

at the beginning of every file)

clang -D NDEBUG -Wall -O3 -o main main.c

#define NDEBUG

27

Error vs assertion failure
an error happens when, for external reasons, your program cannot run

examples: out of memory, file cannot be read, network unreachable

an assertion fails if a fundamental assumption in your code is violated

indicates a bug in your code

28

STATIC ANALYSIS

29

Static analysis operates on the source code

(before any assembly or executable code is produced)

Compilers do advanced case analysis on the code

(in order to produce faster code)

The same analysis can be used to find (potential) bugs

Not an exact science

Relies on heuristics to detect hazardous code

Suffers from false negatives and false positives

30

Clang’s static analyzer
If you use a Makefile, run

scan-build make

> result

31

https://www.poirrier.ca/courses/softeng/slides/scan-build-example/index.html

Python linters
A “linter” is a static analyzer

Typically, linters enforce a specific coding style

Examples:

Pylint

flake8

mypy (adds static type checking)

def fib(n):
a, b = 0, 1
while a < n:

yield a
a, b = b, a+b

def fib(n: int) -> Iterator[int]:
a, b = 0, 1
while a < n:

yield a
a, b = b, a+b

32

DYNAMIC ANALYSIS

33

Dynamic analysis operates on the running executable

(during testing)

by adding runtime checks

can find more bugs than static analysis…

… but only for those bugs are triggered by some test!

34

Sanitizers
With sanitizers, runtime checks are added by the compiler.

35

UBSan
The “undefined behavior sanitizer” detects many types of undefined behavior (at runtime)

triggers an immediate crash (with an explanation message)

Pass “-fsanitize=undefined” to gcc or clang

36

#include <stdio.h>
#include <stdlib.h>

int f(int a, int b)
{

printf("a = %d, b = %d\n", a, b);

int r = a / b;

printf("We survived!\n");

return r;
}

int main(int argc, char **argv)
{

int i = (argc < 2) ? 5 : strtol(argv[1], NULL, 0);
int r = f(10, i);
printf("r = %d\n", r);

}

37

Without UBSan:

gcc -O3 -o timetravel timetravel.c
./timetravel 0

a = 10, b = 0
We survived!
Floating point exception (core dumped)

With UBSan:

clang -O3 -fsanitize=undefined -o timetravel timetravel.c
./timetravel 0

a = 10, b = 0
timetravel.c:8:12: runtime error: division by zero
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior timetravel.c:8:12 in
UndefinedBehaviorSanitizer:DEADLYSIGNAL
==3245281==ERROR: UndefinedBehaviorSanitizer: FPE on unknown address 0x00000042b43d (pc 0x00000042b43d bp 0x7ffdb30690f0 sp

#0 0x42b43d in f /home/poirrier/courses/softeng/code/std/timetravel.c:8:12
#1 0x42b43d in main /home/poirrier/courses/softeng/code/std/timetravel.c:18:10
#2 0x7fd43af4db89 in __libc_start_call_main (/lib64/libc.so.6+0x27b89) (BuildId: 3ebe8d97a0ed3e1f13476a02665c5a9442adcd
#3 0x7fd43af4dc4a in __libc_start_main@GLIBC_2.2.5 (/lib64/libc.so.6+0x27c4a) (BuildId: 3ebe8d97a0ed3e1f13476a02665c5a9
#4 0x4033d4 in _start (/home/poirrier/courses/softeng/code/std/timetravel+0x4033d4) (BuildId: a42ae4bf9188c9d93ff828ccd

UndefinedBehaviorSanitizer can not provide additional info.
SUMMARY: UndefinedBehaviorSanitizer: FPE /home/poirrier/courses/softeng/code/std/timetravel.c:8:12 in f
==3245281==ABORTING

38

#include <stdlib.h>
#include <stdio.h>

static int (*function_pointer) ();

static int erase_all_files()
{

return printf("Deleting all your files\n");
}

void this_function_is_never_called()
{

function_pointer = erase_all_files;
}

int main() {
return (*function_pointer) ();

}

./ub

Deleting all your files

39

Pros

Fixes the anything-can-happen problem with undefined behavior

(we get a crash with an explanation instead)

No false positives

Cons

Not all types of undefined behavior detected (most are)

Does not always stop the compiler from exploiting undefined behavior

Overhead (~3x slowdown)

Needs good tests

40

ASan
The “address sanitizer” detects many types memory access errors (at runtime)

Separate from UBSan because it uses different mechanisms

triggers an immediate crash (with an explanation message)

Pass “-fsanitize=address” to gcc or clang

41

#include <stdio.h>

char *f()
{

char buffer[16];

snprintf(buffer, sizeof(buffer), "Hello");

return buffer;
}

int main()
{

char *s = f();

printf("Here is the return value of f():\n");
printf("%s\n", s);
return 0;

}

42

clang -O3 -fsanitize=address -o bug bug.c
./bug

Here is the return value of f():
===
==3245688==ERROR: AddressSanitizer: stack-use-after-scope on address 0x7f604b800020 at pc 0x00000043cd41 bp 0x7ffd5bb0da70
READ of size 1 at 0x7f604b800020 thread T0

#0 0x43cd40 in puts (/home/poirrier/courses/softeng/code/std/bug+0x43cd40) (BuildId: fd60803d545d3b62b6353b1498d16e17a
#1 0x4f39d1 in main (/home/poirrier/courses/softeng/code/std/bug+0x4f39d1) (BuildId: fd60803d545d3b62b6353b1498d16e17a
#2 0x7f604d60db89 in __libc_start_call_main (/lib64/libc.so.6+0x27b89) (BuildId: 3ebe8d97a0ed3e1f13476a02665c5a9442adc
#3 0x7f604d60dc4a in __libc_start_main@GLIBC_2.2.5 (/lib64/libc.so.6+0x27c4a) (BuildId: 3ebe8d97a0ed3e1f13476a02665c5a
#4 0x41d324 in _start (/home/poirrier/courses/softeng/code/std/bug+0x41d324) (BuildId: fd60803d545d3b62b6353b1498d16e1

Address 0x7f604b800020 is located in stack of thread T0 at offset 32 in frame
#0 0x4f393f in main (/home/poirrier/courses/softeng/code/std/bug+0x4f393f) (BuildId: fd60803d545d3b62b6353b1498d16e17a

This frame has 1 object(s):
[32, 48) 'buffer.i' <== Memory access at offset 32 is inside this variable

. . .

43

ASan detects (1)
Out-of-bounds accesses to heap, stack and globals

int a[10];

printf("%d\n", a[20]);

Use-after-free

free(pointer);

printf("%d\n", *pointer);

44

ASan detects (2)
Use-after-return

int *f()
{

int a[10];
return a;

}

void g()
{

int *pointer = f();
printf("%d\n", pointer[0]);

}

Use-after-scope

void g()
{

int *pointer;

if (1) {
int a[10];
pointer = a;

}

printf("%d\n", pointer[0]);
}

45

ASan detects (3)
Double-free, invalid free

void *other_pointer = pointer;

free(pointer);
free(other_pointer);

int a[10];
free(a);

Memory leaks

void f()
{

void *ptr = malloc(10);
}

46

Pros

Detects most memory issues

No false positives

Cons

Not every memory issue detected (many are)

Overhead (~2x slowdown)

Needs good tests

47

Valgrind
Valgrind adds runtime checks on already-compiled executable.

It is a hybrid interpreter / JIT compiler for machine code.

It adds checks around all memory accesses.

Detects uses of invalid pointers (incl. uninitialized memory)

Detects memory leaks (at exit)

48

Valgrind requires compiling with the “-ggdb” option (gcc / clang)

valgrind --leak-check=full ./truthtable all ../data/parse_04.cnf

==3244248== Memcheck, a memory error detector
==3244248== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==3244248== Using Valgrind-3.21.0 and LibVEX; rerun with -h for copyright info
==3244248== Command: ./truthtable all ../data/parse_04.cnf
==3244248==
../data/parse_04.cnf: -3 is out of bounds (n = 2)
==3244248==
==3244248== HEAP SUMMARY:
==3244248== in use at exit: 262,144 bytes in 1 blocks
==3244248== total heap usage: 3 allocs, 2 frees, 266,712 bytes allocated
==3244248==
==3244248== 262,144 bytes in 1 blocks are definitely lost in loss record 1 of 1
==3244248== at 0x484182F: malloc (vg_replace_malloc.c:431)
==3244248== by 0x4023EF: di_push (parse.c:94)
==3244248== by 0x4023EF: dimacs_parse_f (parse.c:215)
==3244248== by 0x402541: dimacs_parse (parse.c:268)
==3244248== by 0x401201: run (main.c:12)
==3244248== by 0x401201: main (main.c:62)
==3244248==
==3244248== LEAK SUMMARY:
==3244248== definitely lost: 262,144 bytes in 1 blocks
==3244248== indirectly lost: 0 bytes in 0 blocks
==3244248== possibly lost: 0 bytes in 0 blocks
==3244248== still reachable: 0 bytes in 0 blocks
==3244248== suppressed: 0 bytes in 0 blocks
==3244248==
==3244248== For lists of detected and suppressed errors, rerun with: -s
==3244248== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

49

Pros

Detects almost all memory issues (that happen at runtime)

Cons

Large overhead (~10x slowdown)

Needs good tests

50

FUZZING

51

We need good tests
Dynamic analysis tools are useful

but only if we have good test cases

and enough of them

 How do we generate good tests?⇒

52

On a basic level, a fuzzer proceeds as follows:

1. take a (mostly valid) example input file

2. run the tested program with that input file

3. check for crashes

4. modify the input file:
random modifications

truncations, duplications

mergers with other example input files

5. go back to 2

53

Advanced fuzzers

use test coverage techniques

to determine which input files are “interesting”,

in that they cover previously-uncovered source code

use static analysis techniques

to determine input file modifications that could trigger specific code branches

54

AFL++
open source project ()https://aflplus.plus/

takes as an input a directory with many (mostly valid) example input files

generates modified input files that (try to) yield crashes

afl-fuzz -i directory/with/example/inputs/ -o directory/for/crash/files/ -- ./executable @@

55

https://aflplus.plus/

