
LECTURE 5

1

PROGRAMMING LANGUAGES

2

COMPILERS VS. INTERPRETERS

3

Parsing
Parsing is the process of taking the source code and creating the corresponding abstract syntax tree (AST).

Example:

t = 3 * ((y * w) + x)

becomes:

Assign (=)
/ \
/ \
t Mult (*)

/ \
/ \
3 Add (+)

/ \
/ \

Mult (*) x
/ \
/ \
y w

4

Compiler vs. interpreter
A compiler:

parses the source code into an AST

takes the AST and […] writes the corresponding assembly / machine code

An interpreter:

parses the source code into an AST

takes the AST and performs the corresponding operations

5

Example
What happens when we write the following Python code?

3.5 + 4.5

The AST is:

Add (+)

/ \

/ \

3.5 4.5

6

Python/ast_opt.c:

static int
fold_binop(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{

...
PyObject *lv = lhs->v.Constant.value;
...
PyObject *rv = rhs->v.Constant.value;
PyObject *newval = NULL;

switch (node->v.BinOp.op) {
case Add:

newval = PyNumber_Add(lv, rv);
break;

case Sub:
newval = PyNumber_Subtract(lv, rv);
break;

case Mult:
newval = safe_multiply(lv, rv);
break;

...
}
...

}

7

Objects/abstract.c:

PyObject *
PyNumber_Add(PyObject *v, PyObject *w)
{

PyObject *result = BINARY_OP1(v, w, NB_SLOT(nb_add), "+");
if (result != Py_NotImplemented) {

return result;
}
Py_DECREF(result);

PySequenceMethods *m = Py_TYPE(v)->tp_as_sequence;
if (m && m->sq_concat) {

result = (*m->sq_concat)(v, w);
assert(_Py_CheckSlotResult(v, "+", result != NULL));
return result;

}

return binop_type_error(v, w, "+");
}

8

Objects/floatobject.c:

static PyObject *
float_add(PyObject *v, PyObject *w)
{

double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
a = a + b;
return PyFloat_FromDouble(a);

}

9

Pros and cons
Advantages of interpreters:

No need for a compilation step

In particular, no need to compile for each different platfom (portability)

Disadvantages of interpreters:

Interpreter needs to be present on the user’s machine

An interpreter will run the code slower than native machine code

10

Compiled or interpreted is not an inherent property of a language.

Example: Python

CPython (the reference and most common Python implementation) is an interpreter

Cython is a compiler

Still, languages usually have a default / preferred way

11

Compiled languages:

C, C++

Rust, Go, Zig

Pascal, Fortran, COBOL

Interpreted languages:

Python, Javascript, Lua

Lisp, Perl, PHP, R, Ruby, VBScript

12

Compile… to what?
The Nim compiler produces C code (which is then compiled)

The Dart compiler produces JavaScript code (then interpreted)

Java compiles to “Java Virtual Machine” (JVM) code

the JVM can be seen as an ISA for a processor that does not exist

the JVM code is shipped to the user

the JVM code is then interpreted

advantage: JVM code is portable

drawback: user must have the JVM interpreter installed

The Python interpreter (CPython) actually produces “Python bytecode” and immediately

interprets it

13

What about shipping the source code to the user…

… then the user compiles it and runs it?

The result would be both portable and fast.

To avoid long compilation delays,

compilation is done section-by-section (file, function or code block)…

… just before the corresponding code needs to be run.

This is Just-in-time (JIT) compilation.

14

Languages with JIT compilation
Julia

C#

Java (source code compiled to JVM code; JVM code JIT compiled to native code)

PyPy (Python)

LuaJIT (Lua)

15

Pros and cons (summary)
Compiled Interpreted Compiled to VM Just-in-time

Needs compilation step yes no yes no

Needs interpreter / VM no yes yes yes

Portable no yes yes yes

Speed fast slow in-between slow at first, then fast

16

Language summary
Ahead-of-time (AOT) compiled-to-machine-code languages:

C, C++, Rust, Go, Zig, Pascal, Fortran, COBOL

Nim (through C)

Purely interpreted languages:

Lisp, Perl, R, VBScript

Other:

Python, Lua: internally compiled to bytecode, then interpreted

PyPy (Python), LuaJIT (Lua): internally compiled to bytecode, then JIT compiled

Java, C#: explicitly compiled to bytecode (bytecode shipped to user), then JIT compiled

Julia: JIT compiled

JavaScript: interpreted and JIT compiled

17

TYPES

18

int a;
// ^ the type of a is int

>>> a = 5
>>> type(a)
<class 'int'>

19

Static or dynamic type checking
Static type checking: type errors are always caught (e.g. at compile time)

Dynamic type checking: type errors are caught only when (if) the code is run

20

Dynamic type checking (Python):

def f():
return "this is a string" / 5

...
as long as f() is not used, not problem
...

f()

TypeError: unsupported operand type(s) for /: 'str' and 'int'

Static type checking (C):

int f()
{

return "this is a string" / 5;
// ^ even though f() is never used, this yields:
// error: invalid operands to binary / (have ‘char *’ and ‘int’)

}

// f() is never used

21

Dynamic type checking (JavaScript):

function f()
{

return "this is a string" / 5;
// ^ returns special value NaN

}

Static type checking (TypeScript):

function f(): number
{

return "this is a string" / 5;
// ^ ERROR: The left-hand side of an arithmetic operation must be of type
// 'any', 'number', 'bigint' or an enum type.(2362)
// (even if f() is never used)

}

22

>>> class C:
... def __init__(self):
... self.a = 0
...
>>> x = C()
>>> x.b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'C' object has no attribute 'b'

>>> class C:
... def __init__(self):
... self.a = 0
...
>>> x = C()
>>> x.b = 1
>>> x.b
1

23

Strong and weak typing
“Strong” and “weak” are vague qualifiers to indicate how strict a language is with type conversions.

Weak typing (C):

int a = -1.8; // not an error, value silently truncated (towards zero) to -1

int *p = (int *)((long int)"abc" + 5) // will compile
*p = 3; // will probably crash

Strong typing (Python):

>>> "a" + 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

but

>>> "a" * 4
'aaaa'

24

MEMORY MANAGEMENT

25

Manual memory management
in C:

int getint()
{

char *buffer = malloc(1024);

size_t n = fread(buffer, 1, 1023, stdin);

buffer[n] = 0;

return strtol(buffer, NULL, 0);
}

We did not check that malloc(1024) worked

We forgot free(buffer)!

26

int getint()
{

char *buffer = malloc(1024);

if (buffer == NULL) {
perror("malloc()");
abort();

}

size_t n = fread(buffer, 1, 1023, stdin);

if (ferror(stdin)) {
perror("fread()");
abort();

}

buffer[n] = 0;

int r = strtol(buffer, NULL, 0);

free(buffer); // <-------- free memory

return r;
}

27

Automatic memory management
in Python:

def getint():
buffer = input()
return int(buffer)

28

How does automatic memory management work?
We need to keep track of the memory that is in use.

Reference counting

Garbage collection

29

Reference counting
struct object_t {

int refcount;
...

};

void object_ref(struct object_t *obj)
{

obj->refcount = obj->refcount + 1;
}

void object_unref(struct object_t *obj)
{

obj->refcount = obj->refcount - 1;

if (obj->refcount == 0) {
free(obj);

}
}

30

Refcount:

set to 1 when object created

incremented whenever object referenced (used)

decremented whenever object goes out of scope

expression is processed but not assigned or returned

local variable

31

def f():
s = ("abc" + "def") + "ghi"
t = s
return t

1. "abc" created, refcount 1
2. "def" created, refcount 1
3. "abcdef" created, refcount 1
4. ("abc" + "def") is done, "abc" refcount 0, "def" refcount 0, both freed
5. "ghi" created, refcount 1
6. "abcdefghi" created, refcount 1
7. ("abc" + "def") + "ghi" is done, "abcdef" and "ghi" freed
8. s = "abcdefghi" done, but it is an assignment, refcount of "abcdefghi" stays 1
9. s referenced, refcount of "abcdefghi" becomes 2

10. t = s done, but it is an assignment, refcount stays 2
11. t referenced, refcount of "abcdefghi" becomes 3
12. return t is done, but it is a return, refcount of "abcdefghi" stays 3
13. s and t go out of scope, refcount of "abcdefghi" becomes 1

32

Problem with refcounting
Cycles:

class C:
pass

def do_nothing():
a = C()
t = a

for i in range(100000000):
n = C()
n.prev = t
t = n

a.prev = t

return 1

33

Garbage collection
keep track of all variables in scope

keep track of all allocated blocks of memory

every few seconds, “garbage collection”

look through all the variables, if they reference some memory, mark it as in-use

look at every block, if not referenced, free it

Pro: does not suffer from cycle issue

Con: memory usage can grow a lot between garbage collections

Con: garbage collections pauses can block the process for a long time

(making it feel unresponsive)

34

OTHER LANGUAGE FEATURES

35

Macros
Macros allow us to generate fragments of source code automatically.

C macro example:

equivalent to:

#define THIS_5X(a) a, a, a, a, a

int array[10] = { THIS_5X(1), THIS_5X(2) };

int array[10] = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };

36

Macros can be useful:

#define ARRAY_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))

But beware! They are just text replacement:

#define PRODUCT_WRONG(a, b) (a * b)

int a = PRODUCT_WRONG(1 + 2, 3 + 4); // <--- 1 + 2 * 3 + 4 = 11

#define PRODUCT_CORRECT(a, b) ((a) * (b))

int a = PRODUCT_CORRECT(1 + 2, 3 + 4); // <--- (1 + 2) * (3 + 4) = 21

37

Generics
In C, those must be implemented separately:

void int_array_sort(int *array, int size);
void float_array_sort(float *array, int size);

In Python, because of dynamic type checking, there is no need:

The type of array will be figured out at runtime

def array_sort(array):
"<", "<=", "==", etc. will work for either int and float

To solve this, C++ adds generics:

template <typename T> void array_sort(T *array);

38

Languages with generics
C++

C#

Java

Go

Rust

Swift

TypeScript

…

39

Object-oriented programming
A compound type is any type that is defined in terms of one or more other types.

In C:

In Python:

struct point {
float x;
float y;

};

class Point:
def __init__(self):

self.x = 0.0
self.y = 0.0

40

In object-oriented programming (OOP), compound types (“classes”)
can have functions attached to them (“methods”).

In C++:

In Python:

struct point {
float x;
float y;

void scale(float l) { x *= l; y *= l; };
};

class Point:
def __init__(self):

self.x = 0.0
self.y = 0.0

def scale(self, l):
self.x = self.x * l
self.y = self.y * l

41

As a consequence, in OOP, data and the methods that operate on them are usually defined close together.

We can construct complex type hierarchies:

define a class for vehicle, has a price method

define a class for bike, inherits from vehicle

inherits the price method from vehicle (no need to rewrite it)

among other properties, has two wheels

define a class for car, inherits from vehicle

inherits the price method from vehicle (no need to rewrite it)

among others has four wheels

etc.

42

Functional programming
In functional programming, functions are “first-class” types:

they can be used in expressions

they can be assigned to variables

def map(array, fn):
r = array.copy()
for i in range(len(array)):

r[i] = fn(r[i])
return r

def double_it(x):
return x * 2

map([0, 1, 2, 3, 4], double_it)

-> [0, 2, 4, 6, 8]

43

Declarative and logic programming
We describe what we want, not how to get it.

Example: SAT formulas:

We describe the constraints, not how to get a solution.

x1 and ((not x2) or x3) and (not x3)

44

