
LECTURE 1 – BOOLEAN LOGIC AND
INTEGERS

1

BOOLEAN LOGIC

2

Boolean values
False = 0

True = 1

Boolean variables:

x ∈ {0, 1}

3

Boolean expressions
Boolean operators:

operator math pseudocode C code logic gate

negation ¬ not !
A Q

conjunction ∧, × and &&, & A

B
Q

disjunction ∨, + or ||, | A

B
Q

Example expression:

(a and b) or (not c)

Example function:

f(a, b, c) := (a and b) or c

4

NOT operator
Truth table:

x not x

0 1

1 0

Example assignment:

w := not a

5

AND operator
Truth table:

x y x and y

0 0 0

0 1 0

1 0 0

1 1 1

Example assignment:

z := a and (not b)

6

OR operator
Truth table:

x y x or y

0 0 0

0 1 1

1 0 1

1 1 1

Example assignment:

z := (not a) or (b and c)

7

More operators!
A

B
Q

XOR
x y x xor y

0 0 0

0 1 1

1 0 1

1 1 0

A

B
Q

NAND
x y x nand y

0 0 1

0 1 1

1 0 1

1 1 0

A

B
Q

NOR
x y x nor y

0 0 1

0 1 0

1 0 0

1 1 0

8

Q: How many distinct unary Boolean operators?

A: one? (NOT)

Actually, we have 4 deterministic unary operators in total (counting 3 trivial unary operators):

always false

x 0

0 0

1 0

always true

x 1

0 1

1 1

identity

x x

0 0

1 1

NOT

x not x

0 1

1 0

9

Q: How many distinct binary operators?

A: As many as there are corresponding truth tables.

Q: How many distinct truth tables for two Boolean inputs and one Boolean output?

x y op(x, y)

0 0 ?

0 1 ?

1 0 ?

1 1 ?

10

Q: Why do we usually use NOT, AND, OR only?

A: Because

they are the most intuitive

all nontrivial operators can be represented with NOT, AND and OR

Examples:

x nand y = not (x and y)

x xor y = (x or y) and (not (x and y))

Note:

NAND and NOR are called universal logic gates:

every nontrivial operator can be represented with each alone

11

Q: How do we prove this?

x xor y = (x or y) and (not (x and y))

A:

x y x xor y (x or y) and (not (x and y))

0 0 0 0

0 1 1 1

1 0 0 0

1 1 1 1

The identity is correct iff the truth tables match.

12

Boolean identities I
x and 0 = 0

x or 1 = 1

x and 1 = x

x or 0 = x

x or x = x

x and x = x

13

Boolean identities II
AND is commutative:

x and y = y and x

AND is associative:

x and (y and z) = (x and y) and z

OR is commutative:

x or y = y or x

OR is associative:

x or (y or z) = (x or y) or z

14

Boolean identities III
Distributivity (AND over OR):

x and (y or z) = (x and y) or (x and z)

Distributivity (OR over AND):

x or (y and z) = (x or y) and (x or z)

De Morgan’s law (1):

(not x) and (not y) = not (x or y)

De Morgan’s law (2):

(not x) or (not y) = not (x and y)

15

Satisfiability problem
Given a Boolean expression, find a value for each variable such that the expression is true.

Equivalently: Find a 1 in the truth table.

Example: x1 and ((not x2) or x3) and (not x3)

x1 x2 x3 x1 and ((not x2) or x3) and (not x3)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Solution: x1 = 1, x2 = 0, x3 = 0
16

Definitions
Variable: for some
Ex.:

x ​,j j ∈ J ⊆ N

x1
x5

Literal: either or for some
Ex.:

x ​j ¬x ​,j j ∈ J

x3
(not x8)

Disjunctive clause: for some
Ex.:

​ ¬x ​ ∨⋁j∈J0 j ​ x ​⋁j∈J1 j J , J ⊆0 1 J

x2 or (not x4) or (not x6)
(not x1) or x5 or x6 or x7 or x9

Conjunctive clause: for some
Ex.:

​ ¬x ​ ∧⋀j∈J0 j ​ x ​⋀j∈J1 j J , J ⊆0 1 J

x2 and (not x4) and (not x6)
(not x1) and x5 and x6 and x7 and x9

17

Conjunctive normal form
The conjunctive normal form (CNF) is a conjunction of disjunctive clauses:

Examples:

​ ​ ​ ¬x ​ ∨ ​ x ​ ​ , where J , J ⊆
i∈I

⋀
⎝

⎛

j∈J i,0

⋁ j

j∈J i,1

⋁ j
⎠

⎞
i,0 i,1 J ⊆ N, ∀i ∈ I ⊆ N

((x1 or x2) and (x3 or x4) and (x5 or x6))

((x1 or (not x2)) and (x3 or (not x4)))

(x2 or (not x4) or (not x6))
and ((not x1) or x5 or x6 or x7 or x9)
and ((not x1) or (not x2) or (not x3))
and (x4 or x5 or x6)

18

Disjunctive normal form
The disjunctive normal form (DNF) is a disjunction of conjunctive clauses:

Examples:

​ ​ ​ ¬x ​ ∧ ​ x ​ ​ , where J , J ⊆
i∈I

⋁
⎝

⎛

j∈J i,0

⋀ j

j∈J i,1

⋀ j
⎠

⎞
i,0 i,1 J ⊆ N, ∀i ∈ I ⊆ N

((x1 and x2) or (x3 and x4) or (x5 and x6))

((x1 and (not x2)) or (x3 and (not x4)))

(x2 and (not x4) and (not x6))
or ((not x1) and x5 and x6 and x7 and x9)
or ((not x1) and (not x2) and (not x3))
or (x4 and x5 and x6)

19

Theorems
Every Boolean expression can be put into CNF

For every Boolean expression with variables and literals using operators { NOT, AND,

OR }, there exists an equivalent CNF with variables clauses and literals at

most.

n k

n + k 3k 7k

Satisfiability for a CNF (“SAT”) is hard.

Every Boolean expression can be put in DNF

For every Boolean expression with variables and literals using operators { NOT, AND,

OR }, there exists an equivalent DNF with variables and literals at most

n k

n n × 2n

Satisfiability for a DNF is trivial.

20

Example:
(x2 and (not x4) and (not x6))

or ((not x1) and x5 and x6 and x7 and x9)
or ((not x1) and (not x2) and (not x3))
or (x4 and x5 and x6)

1. Take any clause, e.g. (x2 and (not x4) and (not x6)).
2. Set x2 = 1, x4 = 0, x6 = 0.
3. Done

21

INTEGER ARITHMETIC

22

Computers are made out of Boolean gates

But we want to represent numbers other than 0 and 1

How do we proceed?

Consider Booleans as binary digits (bits)

Group them together to form numbers in base 2

23

Base-10 numbers
In base 10 (decimal), we have 10 digits: { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Using one digit, we can count to 9:

0 1 2 3 4 5 6 7 8 9

Then we need more digits:

10 11 12 13 14 15 16 17 18 19

20 21 22 23 ...

If we wanted to count from 0 to 9999 (say, to represent a date), we may decide to use 4 digits:

0000 0001 0002 0003 0004 0005 0006 0007 0008 0009

0010 0011 0012 0013 ...

24

Base-10 numbers
1984 = ?

1 9 8 4

= 1 × 1000 + 9 × 100 + 8 × 10 + 4

= 1 × 103 + 9 × 102 + 8 × 101 + 4 × 100

25

Base-2 numbers
In base 2 (binary), we have 2 digits: { 0, 1 }

Using one digit, we can count to 1:

0 1

Then we need more digits:

10 11 100 101 110 111 1000 1001 ...

If we wanted to count from 0 to 15, we may decide to use 4 digits:

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

26

Base-2 numbers
1001b = ?

1 0 0 1

= 1 × 8 + 0 × 4 + 0 × 2 + 1

= 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20

= 9

Note:

rightmost / least-significant bit is called bit 0

leftmost / most-significant bit is called bit n − 1

27

Fixed bit width
For any integer, we must always know how many digits (bits) it has.

Typically, this number of bits is fixed in our code.

bits a.k.a. C type other C type

8 byte† uint8_t unsigned char†

32 uint32_t unsigned int (Windows, Linux, BSD, macOS)

64 uint64_t unsigned long (Linux, BSD, macOS)

unsigned long long (Windows)

† = on almost all contemporary platforms as of 2023

28

Integers in hardware and in programming languages
Most computers† support 8, 16, 32 and 64-bit arithmetic natively (i.e., operations are fast)

Arithmetic can be performed with arbitrary-sized integers by implementing the operations in

software (hence much slower).

In C, every integer type has a specific size.

In C, arbitrary-sized integers are not supported by the language (they require using specific

libraries).

In Python, all integers can have arbitrary sizes (with a large performance penalty, especially

when exceeding 32 bits)

29

bits largest integer (approx.)

8 255

16 65,535

32 4,294,967,295 4 billions

64 18,446,744,073,709,551,615

128 340,282,366,920,938,463,463,374,607,431,768,211,455

= 2 −bits 1

2.1019

3.1038

1 decimal digit = log ​ 10 bits ≃2 3.3219 bits

30

Operations with integers
Essentially the same a schoolbook operations:

0 1 0 1 0 0 1 1

+ 0 1 1 0 0 0 0 1

= 1 0 1 1 0 1 0 0

Just like in school:

addition and subtraction are straightforward

multiplication is more complex

division is much more complex

31

Signed integers
How do we represent negative numbers?

Impossible with previous approach.

Solution 1:

“sign-magnitude”: sacrifice one bit, which we reserve to store the sign.

Drawback: zero has two representations (+0 and -0)

Drawback: Boolean logic for + and - must handle many cases

Solution 2:

“one’s complement”: reserve top bit for the sign, must be zero for a positive number

when a number is negative, takes its (positive) opposite and flip all bits

Drawback: zero has two representations (+0 and -0)

Drawback: Boolean logic for + and - is simpler but still affected

32

Signed integers: two’s complement
Solution 3 (all current computers†):

“two’s complement”: when a -bit number is negative, represent it the same as the

unsigned number .

n x

2 −n x

The top bit is 1 for negative numbers.

Drawback: Flipping sign slightly more complex (flip all non-sign bits then add one).

Advantage: zero has a single representation

Advantage: Boolean logic for + and - is the same as for unsigned integers

33

4-bit signed integers (two’s complement)
b3 b2 b1 b0 unsigned signed

0 0 0 0 0 0

0 0 0 1 1 1

0 0 1 0 2 2

0 0 1 1 3 3

0 1 0 0 4 4

0 1 0 1 5 5

0 1 1 0 6 6

0 1 1 1 7 7

1 0 0 0 8 -8

1 0 0 1 9 -7

1 0 1 0 10 -6

1 0 1 1 11 -5

1 1 0 0 12 -4

1 1 0 1 13 -3

1 1 1 0 14 -2

1 1 1 1 15 -1

Example:

signedness decimal binary

unsigned 2 + 11 = 13 0010b + 1011b = 1101b

signed 2 + -5 = -3 0010b + 1011b = 1101b

34

bits (min) (max)

8 -128 127

16 -32768 32767

32 -2,147,483,648 2,147,483,647

64

128

−2bits−1 2 −bits−1 1

≃ −9.1018 ≃ 9.1018

≃ −2.1038 ≃ 2.1038

35

Q: What happens if we run this?

unsigned char a = 255;
unsigned char b = 1;
unsigned char x = a + b;

unsigned char a = 1;
unsigned char b = 2;
unsigned char x = a - b;

signed char a = 127;
signed char b = 1;
signed char x = a + b;

signed char a = -128;
signed char b = 1;
signed char x = a - b;

A: It’s complicated!

We will dedicate an entire chapter to this.

36

